医疗图像分割数据集synapse
2025-04-21 16:08:14 953.46MB 数据集 医疗图像 深度学习 图像分割
1
内容概要:本文展示了基于 PyTorch 实现的一个深度学习网络,即集成了坐标注意力(CoordAtt)模块的 U-Net 网络,主要用于医疗影像或者卫星图片等高分辨率图像的分割任务中。文中定义了两种关键组件:CoordAtt 和 UNetWithCoordAtt。CoordAtt 是为了在水平和垂直维度引入空间注意力机制来增强特征提取能力而提出的一种改进方法。具体做法是通过对不同方向进行池化操作并用1x1卷积核调整通道数目与生成最终的注意权值。UNet部分则继承了传统的U形结构思想,在编码和解码过程中不断下采样获得抽象特征以及通过上采样的方式复原到原始尺寸;在每一次编码后的处理步骤和部分解码环节加入 CoordAtt,从而提高了网络捕捉长程依存关系的能力。最后还附有一个简单的测试函数来实例化对象并验证输出正确性。 适用人群:适用于有一定 PyTorch 使用经验的研究者或从业者,对于从事图像处理特别是需要做精确边界定位的应用领域的工作人员来说非常有价值。 使用场景及目标:该架构非常适合于对精度有较高要求但数据样本相对匮乏的情境之下。其目的是解决医学扫描、自动驾驶、遥感图像等领域面临的复杂背景噪声问题,在保证速度的同时提供更为精准的对象分割。 其他说明:本文提供了详细的源代码和注释,有助于深入理解 U-Net 系列变体以及注意力机制的设计思路。同时由于采用模块化的搭建方式也很容易进行参数调优以适配不同的业务需求。
2025-04-21 13:48:25 4KB 深度学习 U-Net PyTorch 图像分割
1
内容概要:本文介绍了面向移动图像去噪任务的大规模数据集(Mobile Image Denoising Dataset, MIDD)及其高效的基线模型 SplitterNet。MIDD 数据集由超过40万对不同光线条件下拍摄的手机动态/静态照片构成,涉及20种不同传感器,并补充了用于精确模型评估的新测试集DPerview。SplitterNet 模型采用创新架构,在保证高精度同时实现了移动端高效推理速度(处理800万像素图片小于一秒),并在多种性能指标上超越先前解决方案。实验证明,训练后的模型在不同摄像头上的泛化能力尤为突出。 适合人群:研究者和技术开发人员,特别是从事图像去噪和深度学习应用于移动平台的研究人员及从业者。 使用场景及目标:本项目主要针对提高智能手机拍照质量的应用场合,旨在为研究人员提供丰富且高质量的真实世界图像样本以及高效的去噪模型,以改善各种环境光线下手机相机捕获的照片品质。具体应用目标涵盖快速在线去噪、多曝光融合增强等多个方面,最终使用户体验得到质变性的提升。
2025-04-21 13:17:07 9.49MB 图像处理 深度学习 移动计算
1
MATLAB图像增强工具:复杂代码实现,带GUI界面,可载入原图和参照图像强化,RGB/HSV分量调整,MATLAB图像增强工具:复杂代码实现,带GUI界面,可载入原图和参照图像强化,RGB/HSV分量调整,MATLAB图像增强代码 代码些许复杂,由本人一个朋友编写 是机器视觉和图像增强领域的应用,有gui界面,可以载入原图和参照强化的图像,读取参照图像的RGB或者HSV 分量,并强化原图像, 运行,corrction.m.结果如下图 ,MATLAB图像增强; GUI界面; 载入原图; 参照强化图像; RGB/HSV分量; 图像强化; 运行corrction.m; 结果展示。,MATLAB图像增强程序:机器视觉与GUI界面的优化应用
2025-04-21 12:22:44 5.5MB
1
在MATLAB中进行图像处理和计算机视觉开发时,经常需要涉及到摄像头模型的使用。本项目主要探讨了如何在MATLAB中实现从三维空间坐标到二维图像坐标的转换,这是一个关键步骤,尤其在摄像头校准、目标检测和追踪等应用中。下面我们将详细讲解这个过程涉及的知识点。 我们要理解摄像头模型的基本概念。摄像头可以视为一个投影设备,它将三维空间中的点通过透镜系统映射到二维图像平面上。这个过程中,由于透镜的非理想特性(如径向畸变、切向畸变),原始的直线和点在成像后可能会发生弯曲和偏移,这就是所谓的镜头畸变。为了准确地进行图像分析,我们需要校正这些畸变。 在MATLAB中,我们通常使用内置的摄像头模型函数来处理这些问题。例如,`projectPoints`函数就是其中的一个关键工具。该项目中的`projectPoints.m`文件很可能就是实现这一功能的代码。该函数可以接受三维点的坐标、相机内参矩阵(包括焦距、主点坐标)以及镜头畸变系数,然后计算出这些点在图像平面上的对应位置。 相机内参矩阵包含了摄像头的光学特性,一般由以下部分组成: 1. 焦距f,通常以像素为单位,位于对角线元素中。 2. 主点(c_x, c_y),即图像中心的像素坐标,位于对角线元素下一行的前两个元素。 3. 有时还包括skew系数,表示x轴和y轴之间的倾斜,位于对角线元素下一行的第三个元素。 镜头畸变参数通常包括径向畸变(k1, k2, k3等)和切向畸变(p1, p2)。径向畸变是由于透镜中心与边缘的曲率差异导致的,而切向畸变则是因为透镜与图像传感器的不平行造成。 在`Demo.m`文件中,很可能是项目的一个演示或测试实例,它可能展示了如何调用`projectPoints`函数,并结合实际的摄像头参数和畸变系数,将三维点投影到二维图像上。通过运行这个示例,我们可以直观地看到畸变校正前后的效果。 `license.txt`文件则包含软件的许可协议,确保用户在使用代码时遵守相应的法律条款。 这个MATLAB项目涵盖了摄像头模型的使用、镜头畸变校正和三维到二维坐标转换等核心知识点,对于理解和实践计算机视觉中的图像投影问题非常有帮助。通过深入学习和理解这些内容,我们可以更好地应用于无人机航拍、自动驾驶、机器人导航等领域。
2025-04-21 11:37:19 4KB 硬件接口和物联网
1
BUSI(Breast Ultrasound Image)是一个包含乳腺超声图像的分类和分割数据集。该数据集包括了 2018 年收集的乳腺超声波图像,涵盖了 25 至 75 岁的 600 名女性患者。数据集由 780 张图像组成,每张图像的平均大小为 500*500 像素。这些图像被划分为三类:正常、良性和恶性。而在良性和恶性乳腺超声图像中,还包含了对应胸部肿瘤的详细分割标注,为深入研究和精准诊断提供了关键信息。这份数据集不仅为乳腺癌研究提供了丰富的图像资源和宝贵支持。 乳腺超声成像技术是一种常用的乳腺疾病检查方法,它通过超声波来获取乳腺组织的图像,具有无创、无痛、操作简便、成本低等特点,是早期发现乳腺病变的重要手段之一。BUSI乳腺超声图像数据集是专门为乳腺病变的分类和分割研究而构建的,对于医疗影像学以及人工智能辅助诊断领域具有重要价值。 数据集中的图像来自2018年的收集,涵盖了广泛年龄段的女性患者,从25岁至75岁不等。由于乳腺疾病的发病与年龄有一定关联,不同年龄段的女性患者可能表现出不同的超声图像特征,这对于研究乳腺病变的年龄分布特征、不同年龄段的发病风险评估等都提供了宝贵的信息。 数据集包含了780张高分辨率的超声图像,每张图像的平均大小为500x500像素,这样的分辨率足以捕捉乳腺组织的细微结构,对于病变区域的辨识和分析至关重要。图像被分为三个主要类别:正常、良性以及恶性。这种分类对于医疗专业人员在临床中进行快速准确的诊断提供了直接帮助,同时也为计算机辅助诊断(CAD)系统的学习与验证提供了基础数据。 在良性与恶性图像中,数据集还包含了详细的肿瘤分割标注,标注区域通常指的是病变的轮廓或边缘,这对于图像分割、计算机视觉识别等任务至关重要。通过这些详细标注,研究人员和工程师可以训练和测试更为精准的图像分割算法,识别和量化肿瘤区域,进而辅助医生在制定治疗方案时做出更为科学的决策。 除了图像本身,该数据集对于深入研究乳腺癌的潜在病理机制、影像学特征与病理诊断之间的联系提供了坚实的数据支撑。医生和科研人员可以利用这些数据进行模式识别、图像分析,以及探索可能存在的影像学标志物,这些标志物可能成为未来诊断乳腺癌的新途径。 此外,BUSI乳腺超声图像数据集还支持跨学科合作,如医学影像学、数据科学和人工智能领域的结合,有助于推动医疗影像分析技术的进步。通过构建和应用深度学习模型,可以实现从传统影像学检查到人工智能辅助诊断的转变,提高乳腺癌的筛查和诊断效率。 BUSI乳腺超声图像数据集不仅为乳腺癌的基础和临床研究提供了丰富的图像资源,也为开发和验证智能化的医学影像分析工具提供了重要的数据支撑,具有较高的应用价值和科研意义。
2025-04-21 11:35:32 159.94MB 医学图像数据集
1
细粒度图像分类旨在从某一类别的图像中区分出其子类别,通常细粒度数据集具有类间相似和类内差异大的特点,这使得细粒度图像分类任务更加具有挑战性。随着深度学习的不断发展,基于深度学习的细粒度图像分类方法表现出更强大的特征表征能力和泛化能力,能够获得更准确、稳定的分类结果,因此受到了越来越多研究人员的关注和研究。 【细粒度图像分类】是图像识别领域的一个子任务,主要目标是区分同一类别下的不同亚类别,例如区分不同种类的鸟类或汽车型号。由于这些亚类别之间具有高度的相似性和细微的差异,使得此类任务相比传统的粗粒度图像分类更具挑战性。细粒度图像分类在实际应用中有着广泛的需求,如生物多样性研究、自动驾驶车辆识别、安防监控等。 【深度学习】在解决细粒度图像分类问题上展现出优越性,通过构建深层神经网络,如**卷积神经网络(CNN)**,能够自动学习和提取多层次的特征,从而更好地捕捉图像中的微小细节。CNN的多层结构能够逐渐从低级特征(如边缘、颜色)进化到高级特征(如物体结构、纹理),这对于区分细粒度类别的关键特征至关重要。 **基于强监督的细粒度图像分类**方法通常需要大量的带有精确位置标注(如关键点或部分边界框)的数据进行训练。这类方法通过定位对象的局部特征来提高分类准确性,如Part-Based CNN、Attention机制等。这些模型在学习过程中考虑了物体的不同部位,强化了对关键部位特征的学习。 **弱监督的细粒度图像分类**则相对较为宽松,仅需类别标签,不需精确的位置信息。这通常通过利用数据增强、自注意力机制或者无监督学习策略来挖掘潜在的局部特征。尽管缺乏精确的标注,但这些方法仍能取得不错的效果。 **YOLO(You Only Look Once)**是一种实时目标检测系统,虽然最初设计用于通用物体检测,但已被扩展应用于细粒度图像识别。YOLO通过单个神经网络同时预测边界框和类别概率,对于快速识别细粒度图像的特定部位有优势。 **多尺度CNN**考虑了不同尺度下的信息,适应了细粒度图像中对象可能出现在不同大小的情况。通过多尺度输入或金字塔结构,网络可以捕捉到不同分辨率的细节,提高分类精度。 **生成对抗网络(GAN)**在细粒度图像分类中的应用主要体现在数据增强和特征学习。GAN可以生成新的训练样本,帮助模型学习更多的多样性和复杂性,同时,通过对抗性训练,可以学习到更鲁棒的表示。 细粒度图像分类的**数据增强**方法,如旋转、平移、缩放等,有助于扩大训练集并增强模型的泛化能力。而针对复杂场景,不同的识别方法,如基于关系建模、多任务学习等,可以根据场景特性选择最优策略。 当前的研究趋势和挑战包括:开发更有效的特征表示方法、减少对大量标注数据的依赖、提高模型的解释性以及在有限计算资源下的实时性能优化。未来的细粒度图像分类研究将继续深入探究深度学习的潜力,以应对更多变和复杂的识别任务。
2025-04-20 23:25:45 2.3MB 图像分类
1
基于BP神经网络的人脸识别系统设计详解:包含Matlab源程序、图像数据与实验指南,基于BP神经网络的人脸识别系统设计,包含matlab源程序、原始图片数据和算法实验说明书。 采用matlab软件进行设计,基于BP神经网络对人脸进行识别。 ,基于BP神经网络的人脸识别系统设计; MATLAB源程序; 原始图片数据; 算法实验说明书; 算法训练和优化。,"Matlab基于BP神经网络的人脸识别系统设计与实验" 人脸识别技术作为计算机视觉领域的重要分支,在安全认证、智能监控等领域中发挥着日益重要的作用。BP(Back Propagation)神经网络,作为一种多层前馈神经网络,其通过反向传播算法进行学习和训练,适用于处理非线性问题,因此被广泛应用于人脸识别领域。 本文档系统地介绍了一种基于BP神经网络的人脸识别系统的设计。该系统的核心是利用Matlab软件开发的,它包含了完整的源程序、原始图片数据集以及详细的算法实验指南。通过这套系统的使用,开发者或研究者可以深入了解BP神经网络在人脸识别中的应用,并进行算法的训练和优化。 在文档中,首先对人脸识别系统的设计理念、系统架构以及BP神经网络的基本原理和工作过程进行了详细阐述。接着,文档提供了Matlab编写的源程序代码,这些代码不仅涉及到BP神经网络的初始化、训练和测试,还包括了数据预处理和结果输出等重要环节。此外,为了保证系统的有效性和准确性,文档还提供了一套高质量的原始图片数据集,这些图片数据是系统训练和识别的基础,也是系统性能评估的关键。 实验指南部分为使用者提供了全面的操作步骤和实验方法,使用户能够按照指南步骤顺利地完成系统的设计和实验。文档中不仅包含理论分析,还包括了丰富的实验案例和分析结果,帮助用户理解并掌握基于BP神经网络的人脸识别技术。 除了详细的文档和源代码,本压缩包文件还包括一些重要文件,例如:标题基于神经网络的人脸识别系统设计与实现摘要人脸.doc,这个文件概括了整个项目的主旨和研究目标,为理解整个系统设计提供了一个提纲挈领的视角。基于神经网络的人脸识别系统设计技术分析一引言.txt,该文件可能提供了对于技术背景、发展历程以及当前应用等方面的分析,帮助用户建立起对人脸识别技术的系统认识。 在视觉素材方面,文件列表中提供了1.jpg和2.jpg等图片文件,这些图片可能是用于系统测试的示例图片,或者是在文档中用来展示实验结果的图表。探索神经网络在人脸识别中的奥秘在数字世界中技术的.txt文件,可能包含对神经网络在人脸识别领域应用的深入探讨和展望。基于神经网络的人脸识别系统设计解析.txt文件,该文件可能是对整个系统设计和实施过程的详细解析,为用户提供了学习和借鉴的机会。 本套资料为基于BP神经网络的人脸识别系统设计提供了一个全面的解决方案。无论是对于学术研究还是实际应用,这都是一套宝贵的学习资源。
2025-04-20 15:03:38 166KB safari
1
CIFAR-10 该存储库将托管实验中使用的各种图像分类技术。 经过如上所述的各种实验,我们开发了一个集成学习系统,该系统使用我们在实验中发现的最佳性能方法。 我们主要使用具有 L2SVM 参数变化的各种 K-Means 和具有 SVM 的 Gist 的结果,将其与性能中等的分类器(如随机森林、核多项式逻辑回归)相结合。 集成系统使用偏向投票策略,其中每个分类器预测的最常见的类标签被视为最终预测的类标签。 然而,如果有平局,我们默认使用最强的个体分类器预测的标签。 使用这个集成分类器后,我们观察到性能的显着提高。 最佳组合在测试数据集上的分类准确率为 0.5965。 更多详情请参考报告“bayseians_report.pdf”
2025-04-19 22:19:58 531KB MATLAB
1
在IT行业中,图像和视觉算法工程师是至关重要的角色,他们负责设计、开发和优化用于处理图像数据的算法,广泛应用于人工智能、机器学习、自动驾驶、无人机技术、医疗影像分析、人脸识别等多个领域。本篇将深入探讨各大厂对于图像、视觉算法工程师的面试重点,包括但不限于百度、腾讯、字节跳动、美团、阿里巴巴、拼多多、旷视科技、海康威视、小米和华为等知名公司。 我们来看算法这个核心标签。在图像和视觉算法中,基础的算法知识包括数字图像处理、计算机视觉、机器学习和深度学习。面试官可能会询问应聘者对傅里叶变换、拉普拉斯算子、霍夫变换、边缘检测、图像分割、特征匹配等经典图像处理技术的理解。此外,对于计算机视觉,卷积神经网络(CNN)、循环神经网络(RNN)、长短时记忆(LSTM)以及生成对抗网络(GAN)等深度学习模型也是重点。 在百度这样的互联网巨头,面试可能会涉及搜索引擎图片检索的优化,要求候选人掌握特征提取、相似度计算以及大规模数据处理的能力。腾讯则可能关注在游戏或社交应用中的图像特效和识别技术,如实时美颜、物体识别等。字节跳动的面试可能更偏向于短视频内容理解和推荐系统,需要理解视频帧序列分析和内容理解。 美团作为生活服务类平台,图像与视觉技术可能应用于无人配送、餐厅环境识别等领域,面试可能会涉及到目标检测、场景理解等技术。阿里巴巴在电商领域有着广泛应用,如商品图片质量评估、智能客服的图像识别等,面试会关注候选人在实际业务场景中的解决方案。 拼多多则可能关注在农业、零售等领域的图像识别应用,如农产品质量检测、商品瑕疵识别等,需要候选人对迁移学习和强化学习有一定的了解。旷视科技和海康威视作为安防领域的领先企业,会更加重视人脸识别、行为分析等技术,面试中可能涉及多模态学习和无监督学习。 小米和华为在智能手机和IoT设备方面有广泛需求,面试可能会测试候选人在相机优化、AR/VR、物联网设备视觉交互等方面的知识,如SLAM(同时定位与建图)技术。 成为一位成功的图像、视觉算法工程师不仅需要扎实的理论基础,还需要对具体业务场景有深入理解,并具备解决实际问题的能力。各大厂的面试题目虽各有侧重点,但都旨在考察候选人的算法实现能力、问题解决技巧以及对新技术的敏感度。在准备面试时,除了熟练掌握基础知识,还要关注行业动态,了解最新的研究成果和技术趋势。
2025-04-18 19:13:01 86MB
1