主要介绍了python实现协同过滤推荐算法完整代码示例,具有一定借鉴价值,需要的朋友可以参考下。
1
项目完整可用,配合压缩包内数据库可直接运行使用。 eclipse+mysql5.7+jdk1.8 功能:推荐引擎利用特殊的信息过滤(IF,Information Filtering)技术,将不同的内容(例如电影、音乐、书籍、新闻、图片、网页等)推荐给可能感兴趣的用户。通常情况下,推荐引擎的实现是通过将用户的个人喜好与特定的参考特征进行比较,并试图预测用户对一些未评分项目的喜好程度。参考特征的选取可能是从项目本身的信息中提取的,或是基于用户所在的社会或社团环境。 根据如何抽取参考特征,我们可以将推荐引擎分为以下四大类: • 基于内容的推荐引擎:它将计算得到并推荐给用户一些与该用户已选择过的项目相似的内容。例如,当你在网上购书时,你总是购买与历史相关的书籍,那么基于内容的推荐引擎就会给你推荐一些热门的历史方面的书籍。 • 基于协同过滤的推荐引擎:它将推荐给用户一些与该用户品味相似的其他用户喜欢的内容。例如,当你在网上买衣服时,基于协同过滤的推荐引擎会根据你的历史购买记录或是浏览记录,分析出你的穿衣品位,并找到与你品味相似的一些用户,将他们浏览和购买的衣服推荐给你。 • 基于关联规则的推荐引擎:它将推荐给用户一些采用关联规则发现算法计算出的内容。关联规则的发现算法有很多,如 Apriori、AprioriTid、DHP、FP-tree 等。 • 混合推荐引擎:结合以上各种,得到一个更加全面的推荐效果。
2021-03-08 11:04:53 29.17MB 电影推荐
1
协同过滤推荐算法通过研究用户的喜好,实现从海量数据资源中为用户推荐其感兴趣的内容,在电子商务中得到了广泛的应用。然而,当此类算法应用到社交网络时,传统的评价指标与相似度计算的重点发生了变化,从而出现推荐算法效率偏低,推荐准确度下降问题,导致社交网络中用户交友推荐满意度偏低。针对这一问题,引入用户相似度概念,定义社交网络中属性相似度,相似度构成与计算方法,提出一种改进的协同过滤推荐算法,并给出推荐质量与用户满意度评价方法。实验结果表明:改进算法能有效改善社交网络中的推荐准确性并提高推荐效率,全面提高用户满意度。
2021-03-04 09:06:50 923KB 研究论文
1
一种新的基于项目聚类的协同过滤方法
2021-03-02 16:06:50 261KB 研究论文
1
毕业设计 系统基于协同过滤, 基于用户的和基于item的都有实现 可在线预览 movie.colaplusice.com 基于django2+python3.7+mysql/sqlite+bootstrap3 movielens数据集 邮箱:fjl2401@163.com 详细的技术文档和readme很全。里面附带论文和数据库文件以及爬虫
2021-03-01 13:17:45 8.41MB django python 数据库 协同过滤
1
基于用户的协同过滤推荐算法实现 movielens数据集 输出评分矩阵 相似度 最近邻 推荐电影 预测评分 mae等测评指标
2021-02-28 22:06:25 20.02MB 推荐系统 协同过滤 java
1
基于景点标签的协同过滤推荐
2021-02-22 09:07:56 755KB 研究论文
1
大数据推荐算法之基于用户协同过滤推荐实例usercf,python版,用movielens数据作例子
2021-02-21 22:48:41 3KB 用户推荐 协同过滤算法
1
py,itemcf,论文:https://blog.csdn.net/ancientear/article/details/100836118
2021-02-04 10:05:05 1.49MB 协同过滤
关于协同过滤,FM 的各种算法详细介绍。 协同过滤,简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人透过合作的机制给予信息相当程度的回应并记录下来以达到过滤的目的进而帮助别人筛选信息,回应不一定局限于特别感兴趣的,特别不感兴趣信息的纪录也相当重要。
2021-01-28 05:01:39 2.03MB 协同过滤 FM 推荐系统
1