基于OpenCV实现的双亮度差法+路面能见度测量C++源码,基于VS+OpenCV实现, 附参考论文《基于视频图像处理的高速公路能见度检测系统》 算法处理步骤: 1.灰度化 2.缩小图像尺寸 3.高斯滤波 4.计算平均灰度值 5.判断是白天还是夜晚 6.阈值化 7.形态学闭操作 8.查找轮廓 9.轮廓过滤 10.计算能见度值
2025-04-13 02:14:43 7.18MB opencv
1
《基于CRNN的中国车牌识别数据集:深度学习在中文车牌识别中的应用》 中文车牌识别是计算机视觉领域中的一个重要课题,特别是在智能交通系统、自动驾驶和安全监控等场景中具有广泛应用。本数据集的构建旨在为研究者提供一个高质量、多类型的中文车牌识别训练和测试资源,以推动相关技术的进步。数据集名为"基于CRNN的中国车牌识别数据集",其核心在于结合了来自CCPD(Chinese Character Plate Dataset)和CRPD(Chinese Rare Plate Dataset)的数据,并经过了精心的抽取、清洗和修正,确保了数据的准确性和可用性。 我们要理解的是数据集的构成。这个数据集由训练集和测试集两部分组成,训练集包含62856个样本,用于模型的学习与优化;测试集包含2014个样本,用于评估模型的性能。这样的比例设计有助于保证模型在未见过的数据上也能有良好的表现。 接下来,我们关注的是数据集的多样性。它涵盖了蓝牌、绿牌以及港澳出入牌等多种车牌类型,这不仅要求识别模型能够识别不同的颜色,还必须能处理各种字符样式和布局的差异。此外,数据集中还包括了车牌颜色的识别任务,这进一步提升了识别的复杂性,因为颜色信息在某些应用场景中可能至关重要。 在标签方面,我们看到“数据集”和“中文车牌识别”这两个关键点。这意味着模型不仅要能够识别汉字,还要能正确识别阿拉伯数字和英文字符,这对模型的字符识别能力和语言理解能力提出了高要求。同时,标签的设置也表明,这个数据集适用于训练和评估深度学习模型,特别是卷积循环神经网络(Convolutional Recurrent Neural Network, CRNN),这是一种将卷积神经网络(CNN)和循环神经网络(RNN)结合的架构,特别适合于序列标注任务,如文本识别。 在压缩包子文件的文件名称列表中,我们看到了"CCPD_CRPD",这很可能是指包含了CCPD和CRPD两个数据集的所有图像文件。这些文件可以被模型训练框架(如TensorFlow或PyTorch)直接读取,用于构建和训练模型。 在实际应用中,基于CRNN的模型通常会经历以下步骤:预处理(如灰度化、二值化)、特征提取(通过CNN)、序列建模(通过RNN)和CTC(Connectionist Temporal Classification)损失函数的使用来处理不同长度的序列。通过这样的流程,模型可以逐步学习到车牌图像中的特征,并能适应各种字符排列。 这个基于CRNN的中国车牌识别数据集提供了丰富的训练和测试样本,涵盖了多种车牌类型和颜色,对于研究和开发中文车牌识别系统具有极大的价值。开发者可以通过利用这个数据集,训练出能够在实际环境中稳定运行的车牌识别模型,从而推动智能交通系统的进步。
2025-04-10 11:06:39 732.35MB 数据集 中文车牌识别
1
python机器视觉学习合集, 包含: 19. 基于 OpenCV 的车辆变道检测 20. 基于 OpenCV 的多位数检测器 21. 基于 OpenCV 的焊件缺陷检测 22. 基于 OpenCV 的人脸追踪 23. 基于 OpenCV 的人员剔除 24. 基于 OpenCV 的实时睡意检测系统 25. 基于 OpenCV 的实时停车地点查找 26. 基于 OpenCV 的图像强度操作 27. 基于 OpenCV 的网络实时视频流传输 28. 基于 OpenCV 的位姿估计 29. 基于 OpenCV 的直方图匹配 30. 基于 OpenCV 的阈值车道标记 31. 基于 OpenCV 建立视差图像 32. 使用 OpenCV 预处理神经网络中的面部图像 33. 使用 OpenCV 实现车道线检测 34. 基于 Python 进行相机校准 35. 基于 OpenCV 的车牌识别 36. 基于 OpenCV 的情绪检测 37. 基于 OpenCV 的表格文本内容提取 38. 基于 OpenCV 的实时面部识别 39. 基于 OpenCV 的图像卡通化
2025-04-09 15:32:58 105.23MB opencv 机器视觉
1
MATLAB是一种广泛用于工程、科学计算及教学领域的高性能语言和交互式环境。近年来,由于其强大的矩阵运算能力和直观的编程方式,MATLAB也被应用于图像处理和机器学习等领域。车牌识别作为计算机视觉的一个重要分支,具有广泛的应用价值,比如智能交通系统、停车场管理等。而MATLAB因其内置的大量图像处理函数和工具箱,成为车牌识别算法开发的理想平台。 GUI(图形用户界面)是现代软件应用中不可或缺的一部分,它为用户提供了直观的操作界面,使得非专业用户也能方便地使用复杂的软件功能。在车牌识别系统的开发中,MATLAB可以用来快速搭建和测试GUI界面,同时进行算法的设计与优化。特别是对于初学者和UI设计师来说,MATLAB不仅简化了开发过程,还提供了丰富的资源和工具支持。 本压缩包文件【项目参考】MATLAB雾霾车牌识别GUI设计(第28期)提供了一个完整的参考项目,旨在帮助使用者掌握MATLAB环境下的GUI设计方法,并了解如何将这些设计应用于实际的车牌识别系统中。通过参考该项目,用户能够学习到如何使用MATLAB的GUIDE工具或App Designer来创建用户界面,以及如何将图像处理和模式识别的技术整合到GUI中。此外,这个项目还可能涉及到如何处理雾霾等恶劣天气条件下对车牌识别造成的影响,这在实际应用场景中是非常重要的一环。 在内容上,该项目可能包括以下几个核心知识点: 1. MATLAB基础语法和编程:理解MATLAB的数据类型、控制结构、函数编写等基础知识,这是进行后续开发的前提。 2. 图像处理基础:学习如何在MATLAB中读取、显示、处理和分析图像数据,包括车牌图像的预处理、特征提取等。 3. 车牌识别算法:掌握车牌识别流程中的关键算法,如边缘检测、字符分割、字符识别等技术。 4. GUI设计与实现:利用MATLAB提供的GUIDE或App Designer工具,设计一个直观、易用的用户交互界面,实现车牌识别功能的可视化操作。 5. 系统集成与测试:将车牌识别算法与GUI界面相结合,并对整个系统进行测试和优化,确保在不同的环境下都能稳定运行。 6. 雾霾条件下图像增强处理:探索如何应用图像增强技术来提高雾霾天气下车牌识别的准确率,比如通过对比度调整、去雾算法等手段。 该参考项目不仅包含理论学习,还有实践操作,是初学者入门车牌识别系统开发的理想选择。通过本项目的实践,使用者不仅能够学习到MATLAB的基本使用,还能掌握车牌识别和GUI设计的专业知识,为将来在相关领域的深入研究和应用开发打下坚实的基础。
2025-04-08 15:28:23 553KB UI设计 matlab程序
1
在Windows 10操作系统中,开发计算机视觉应用时,OpenCV和Qt是非常重要的工具。这里提到的 Mingw73_64 是一个针对Windows的GCC(GNU Compiler Collection)的变体,它为开发者提供了一个开源的编译环境,用于编译C++代码,特别是对于那些不希望使用Microsoft Visual Studio的开发者来说。 OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,它包含了众多图像处理和计算机视觉的算法。这个开发包是用Mingw73_64编译的,意味着它是为Windows平台设计的,并且能够与使用该编译器的项目无缝集成。OpenCVConfig.cmake和OpenCVConfig-version.cmake文件是OpenCV库配置文件,用于CMake构建系统,它们提供了关于OpenCV库的路径、版本和其他编译信息,使得在CMakeLists.txt中轻松找到并链接OpenCV库成为可能。 Qt是一个跨平台的应用程序开发框架,尤其适合图形用户界面(GUI)的开发。版本V5.12.12是Qt的一个稳定版本,提供了丰富的API和工具,支持多种操作系统,包括Windows。在计算机视觉项目中,Qt可以用来创建用户界面,展示OpenCV处理后的图像或视频。 "setup_vars_opencv3.cmd"脚本通常用于设置环境变量,以便在命令行环境中使用OpenCV。运行这个脚本会将必要的路径添加到系统的PATH变量中,使得编译器和链接器可以找到OpenCV的头文件和库文件。 "LICENSE"文件包含了这个开发包的许可协议,这对于开源软件至关重要,因为它规定了如何合法地使用、修改和分发软件。 "include"目录包含了OpenCV库的所有头文件,这些头文件包含了函数声明和类定义,开发者在编写代码时需要包含它们来使用OpenCV的功能。 "x64"目录可能包含了针对64位操作系统的OpenCV动态链接库(.dll)和静态库(.lib)。动态链接库在运行时由操作系统加载,而静态库则在编译时被合并到应用程序中。 "etc"目录通常包含配置文件或其他辅助数据,但具体的内容取决于开发包的实现。 这个压缩包提供了一个在Windows 10上使用Mingw73_64编译的OpenCV库,以及Qt V5.12.12版本,使得开发者可以快速开始计算机视觉项目。为了使用这个库,开发者需要熟悉CMake构建系统,以及如何在Qt Creator或命令行环境下配置和编译项目。同时,了解OpenCV的基本概念和函数,以及Qt的GUI编程,都是必不可少的。通过这个开发包,你可以构建从图像处理到复杂视觉算法的各种应用程序。
2025-04-08 14:04:22 14.41MB opencv 计算机视觉 Mingw64
1
"OpenCV与Qt框架下,智能卡尺工具的设计与实现:带X、Y及角度纠偏的图像处理与形状匹配算法研究",基于OpenCV与QT的卡尺工具:工具跟随、精准定位、自动纠偏及图像处理全套源码与学习资料,基于opencv与qt开发的卡尺工具,卡尺工具,具有工具跟随功能,找线找圆工具可以根据形状匹配位置定位实现带X、Y以及角度偏差的自动纠偏,图像采集,图像处理,卡尺工具,找线,找圆,颜色检测,模板匹配,形状匹配,海康工业相机采集+基于形状的模板匹配界面,提前说明,形状匹配算法和找线找圆算法封装成dll直接调用的,其他都是源码,是不错的学习资料,程序资料 ,基于opencv与qt开发; 卡尺工具; 工具跟随功能; 形状匹配; 定位; 自动纠偏; 图像采集; 图像处理; 找线; 找圆; 颜色检测; 模板匹配; 海康工业相机采集; 形状匹配算法封装dll; 程序资料,OpenCV与Qt卡尺工具:图像处理与形状匹配的智能解决方案
2025-04-08 11:45:46 230KB
1
MultiObjectTrackingBasedOnColor, 在使用OpenCV的颜色上,跟踪多个对象 MultiObjectTrackingBasedOnColor ###Track 基于颜色的多对象####In 顺序运行应用程序,你需要执行以下步骤:1 - 正确安装 OpenCV V2.4. 92-在 Visual Sudi
2025-04-07 14:24:53 6KB
1
车牌识别是一种利用计算机视觉技术来识别机动车辆号牌的过程。车牌识别技术的应用领域非常广泛,包括交通控制、停车场管理、车辆安全监控等。在车牌识别技术中,一般需要经过图像采集、车牌定位、字符分割以及字符识别等多个步骤。 图像采集是指利用摄像头或其他图像捕捉设备获取车辆图像。车牌定位是指从获取的车辆图像中识别出车牌的位置,这一步骤是车牌识别的关键,它直接影响到后续步骤的准确性和效率。车牌定位算法的准确率对于整个系统的性能至关重要,常用的车牌定位方法包括颜色分割、边缘检测、纹理分析等。 字符分割是指将定位到的车牌图像中的字符分割开来,以便于对每个字符单独进行识别。字符分割的难点在于不同车牌的字体大小、字符间距等可能各不相同,且同一车牌内可能由于光照、车牌倾斜等原因存在字符粘连或断裂的问题,这要求分割算法具有较高的鲁棒性和适应性。 字符识别是车牌识别的最后一步,也是实现整个车牌识别系统功能的核心步骤。字符识别包括光学字符识别(OCR)技术,通过图像处理和模式识别技术将分割后的字符图像转化为可识别的字符信息。在车牌识别系统中常用的字符识别方法有模板匹配、神经网络识别等。 提到车牌识别,不得不提的一个工具库是OpenCV。OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,包含了大量的图像处理和计算机视觉算法。OpenCV支持多种编程语言,如C++、Python、Java等,它为车牌识别提供了一系列实用的图像处理函数,如图像滤波、形态学操作、特征提取等,能够有效地辅助车牌识别中的各个处理步骤。 在车牌识别的应用中,还需要注意不同国家和地区的车牌格式差异,比如我国车牌通常采用蓝底白字,字母和数字混合的格式;而美国的车牌格式则多样化,有的州是纯数字,有的州则采用数字加字母的组合。因此,车牌识别系统的开发需要根据具体的应用场景来设计和优化。 针对具体车牌识别项目的实施,开发人员经常需要使用到各种编程语言和算法框架。例如,在"stm32-license-Plate-Recognition-master"目录下,可能是基于STM32微控制器平台的车牌识别项目源代码。STM32是一系列32位ARM Cortex-M微控制器的产品系列,广泛应用于嵌入式系统开发,包括汽车电子领域。利用STM32平台实现车牌识别,可以将车牌识别系统嵌入到车辆本身,实现更为高效的自动化监控和管理。 车牌识别技术的不断发展和应用,不仅提高了交通管理的自动化和智能化水平,还为智能交通系统的发展注入了新的活力。随着深度学习和人工智能技术的不断进步,车牌识别的准确率和速度将不断提升,其应用前景将更为广阔。
2025-04-07 13:13:12 2.1MB opencv 车牌识别
1
这是一个ESP32Cam的物联网应用案例,实现WiFi连接上网、对车牌的拍照、TFT屏幕显示图片、图片上传腾讯云、腾讯AI识别车牌、获取显示车牌识别结果。本应用是基于腾讯云的通讯协议、SHA256压缩等算法,转换成C语言程序,经Arduino IDE编译后,能够在ESP32Cam模块中独立运行的全部程序,包括一个Arduino的代码、一个图片及字模的头文件、一个包含两种加密算法的头文件、一个详细测试过程的Word文档等四个文件
2025-04-06 15:39:09 2.68MB ESP32Cam
1
vs2015(vc14)编译好可以直接使用的dlib库(包含编译方法说明文档),此处对应dlib版本是19.20,release和debug库都已经编译好,可以在vs2015直接使用,里面有如何在vs中编译dlib的方法文档,用户也可以直接根据文档进行编译自己需要的版本
2025-04-03 21:21:26 73.42MB dlib dlib库 opencv
1