该资源为opencv_python-4.11.0.86-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl,欢迎下载使用哦!
2025-03-27 11:25:38 40.27MB opencv_python opencv-python
1
基于Keil软件与C语言开发,利用OV7725照相机与STM32F1识别车牌
2025-03-26 21:29:41 3.8MB stm32 源码软件 arm 嵌入式硬件
1
STM32-LPR项目是一个基于STM32微控制器的开源车牌识别系统,它展示了嵌入式领域的高级应用,集成了图像处理、模式识别和实时控制技术。STM32系列是意法半导体(STMicroelectronics)推出的32位微控制器,以其高性能、低功耗和丰富的外设接口而被广泛应用。 在STM32-LPR系统中,STM32芯片作为核心处理器,负责整个系统的运行。STM32家族拥有多种型号,不同型号具有不同的计算能力和内存大小,可以根据项目需求选择合适的型号。例如,可能使用的是STM32F4或STM32H7系列,它们提供了足够的处理能力来执行复杂的图像算法。 该系统的运作流程通常包括以下几个关键步骤: 1. **图像采集**:通过连接到STM32的摄像头模块捕获视频流。这可能涉及串行接口如SPI或I2C,或者更复杂的接口如MIPI CSI-2。图像传感器的选择需要考虑分辨率、帧率和功耗等因素。 2. **预处理**:对捕获的图像进行预处理,包括去噪、增强对比度、直方图均衡化等操作,以优化后续的车牌识别效果。这些操作可以通过STM32内置的硬件加速器(如浮点单元FPU)或者软件算法实现。 3. **特征提取**:对预处理后的图像进行分析,识别出车牌的潜在位置。常用的方法有边缘检测、模板匹配和霍夫变换等。这一阶段的目标是定位出图像中的车牌区域。 4. **字符分割**:在确定了车牌位置后,进一步将车牌区域内的单个字符分割出来。这通常涉及到连通组件分析和二值化处理。 5. **字符识别**:使用OCR(Optical Character Recognition)技术对分割出的字符进行识别。可以采用机器学习模型,如SVM(支持向量机)或深度学习的CNN(卷积神经网络),训练模型以识别不同类型的车牌字符。 6. **结果输出**:识别出的车牌号码通过串口、LCD显示屏或其他接口输出。此外,系统还可以通过无线模块如Wi-Fi或蓝牙将数据传输到远程服务器或移动设备。 STM32-LPR项目的开源性质意味着开发者可以自由地查看、学习和修改源代码,这为学习嵌入式系统设计、图像处理和车牌识别提供了宝贵的资源。开源社区的参与可以推动项目不断优化,增加新功能,适应更多应用场景。 在STM32-LPR-master压缩包中,可能包含以下文件和目录: - `src`:源代码文件夹,包含了C或C++代码,涵盖了从底层驱动到上层应用的各个部分。 - `include`:头文件夹,定义了项目中使用的函数和结构体。 - `firmware.hex`或`.bin`:编译生成的固件文件,可用于烧录到STM32芯片。 - `Makefile`:构建脚本,用于编译和链接源代码。 - `README.md`:项目介绍和使用说明。 - `LICENSE`:开源许可证,规定了代码的使用和分发条件。 通过深入研究这个项目,开发者不仅可以掌握STM32的开发技能,还能了解如何在嵌入式环境中实现复杂的图像处理任务,这对于智能交通、物联网以及工业自动化等领域有着重要的实际应用价值。
2025-03-26 21:21:59 7.69MB 系统开源
1
深度学习车牌识别系统在当前社会中具有极其重要的作用,随着中国经济水平的提升和私家车数量的激增,仅依靠传统人工方式进行车牌识别已变得不切实际。特别是在车辆违法行为监测、高速公路收费站等重要区域,采用软件系统进行车牌识别的需求尤为迫切。传统的车牌识别技术虽然在一定程度上可以满足需求,但已无法应对日益增长的数据量和复杂环境。 深度学习的出现为车牌识别带来了革命性的改变。利用深度学习模型,如YOLOv5(You Only Look Once version 5),我们可以构建一个高效的车牌识别系统。YOLOv5是一种先进的实时目标检测系统,它能在图像中直接定位和识别出车辆的牌照。相比于传统的目标检测模型,YOLOv5的优势在于其处理速度快、准确性高、实时性强,非常适合用于需要快速响应的车牌识别场合。 在设计和实现基于YOLOv5的车牌识别系统时,需要考虑到多个关键技术环节,例如图像采集、预处理、模型训练、车牌定位、字符分割、字符识别等。图像采集主要依赖于高清摄像头,能够在不同光照、天气条件下稳定地捕捉到车辆图像。预处理过程通常包括图像的缩放、去噪、增强等操作,目的是减少外部干扰,提高识别准确率。 模型训练则是整个系统的核心,需要使用大量的车牌图像数据集对YOLOv5进行训练。这些数据集既包括不同地区、不同型号车辆的车牌,也包括各种天气、光照条件下的车牌图像。通过深度学习技术,YOLOv5能够自主学习到车牌的特征,并将其用于未来的识别任务中。 车牌定位是确定车牌在图像中的具体位置,这一步骤对于提高整个系统的效率至关重要。字符分割则是将车牌上的每个字符从背景中分离出来,为后续的字符识别做准备。字符识别部分则是利用训练好的模型对分割出的字符进行识别,最终输出车牌号码。 Python语言在开发此次车牌识别系统中起到了关键作用。Python具有丰富的库支持,如OpenCV用于图像处理,Pandas用于数据处理等,使得开发过程更为高效。同时,Python简洁的语法和强大的功能也便于实现复杂的算法和模型。 目前,车牌识别技术的应用范围非常广泛,从车辆进出管理、交通监控到智能停车系统等,都可利用车牌识别技术来提高运行效率。在未来,随着深度学习技术的进一步发展,车牌识别系统将会更加智能、准确和高效,为智能交通管理、智慧城市构建提供有力的技术支持。 基于YOLOv5的深度学习车牌识别系统不仅能够极大提升车牌识别的准确率和效率,而且对于推动交通管理自动化和智能化具有重要意义。随着技术的不断进步和创新,我们有理由相信,未来的车牌识别技术将会更加成熟和普及,为人们的生活带来更多的便利。
2025-03-26 15:26:46 1.14MB 深度学习 毕业设计
1
OpenCV(开源计算机视觉库)是一个强大的跨平台计算机视觉库,它包含了众多图像处理和计算机视觉的算法。在本案例中,"opencv.zip" 文件包含了OpenCV 4.1版本针对Java环境编译的动态库和JAR文件,特别适用于Linux,尤其是Ubuntu操作系统。 1. **OpenCV 4.1**: 这是OpenCV的一个特定版本,发布于2019年,提供了许多新特性和性能优化。4.1版本引入了改进的深度学习模块(DNN)、更好的aruco标记检测、实时视频流的增强现实功能以及对最新硬件的支持。 2. **Java支持**: OpenCV不仅有C++接口,还支持Java,使得Java开发者也能利用其强大的功能。`opencv-410.jar` 文件是Java开发所需的库,包含了一组Java绑定,允许Java代码调用OpenCV的函数和类。 3. **动态库(libopencv_java410.so)**: 在Linux系统中,`.so` 文件是动态链接库,这里`libopencv_java410.so`是OpenCV的Java接口的动态链接库,用于运行时连接Java应用程序到OpenCV的核心功能。在Ubuntu环境下,这个库文件需要被正确地链接到Java应用,以便运行时能调用OpenCV的功能。 4. **Ubuntu兼容性**: Ubuntu是一个基于Debian的Linux发行版,广泛用于服务器和开发环境。`opencv.zip` 提供的库文件经过测试,能在Ubuntu环境中正常工作,这意味着开发者可以放心在Ubuntu上构建和运行使用OpenCV的Java项目。 5. **集成与使用**: 在Java项目中使用OpenCV,需要将`opencv-410.jar` 添加到项目的类路径中,并确保系统的`LD_LIBRARY_PATH` 包含`libopencv_java410.so` 所在的目录。对于IDE如IntelliJ IDEA或Eclipse,可以通过配置构建路径来添加JAR依赖。对于命令行编译,可以使用`javac` 的`-cp` 参数和`ldd` 或 `ldconfig` 来管理库路径。 6. **应用实例**: 开发者可以使用OpenCV进行各种视觉任务,如图像处理(例如滤波、色彩转换)、特征检测(SIFT、SURF)、物体识别、人脸识别、视频分析、深度学习模型部署等。Java API 提供了与C++类似的接口,但语法更符合Java的习惯。 7. **示例代码**: 基本的OpenCV Java代码可能包括导入必要的库,加载动态库,然后创建和操作图像: ```java import org.opencv.core.Core; import org.opencv.core.Mat; import org.opencv.imgcodecs.Imgcodecs; static { System.loadLibrary(Core.NATIVE_LIBRARY_NAME); } public static void main(String[] args) { Mat src = Imgcodecs.imread("input.jpg"); Mat dst = new Mat(); Imgproc.cvtColor(src, dst, Imgproc.COLOR_BGR2GRAY); Imgcodecs.imwrite("output.jpg", dst); } ``` 这段代码展示了如何读取一个图像,将其转换为灰度,然后保存结果。 8. **调试与优化**: 当遇到问题时,开发者需要检查Java日志输出,确保没有出现链接错误或找不到符号的错误。此外,可以通过调整OpenCV的编译选项来优化性能,比如启用硬件加速,如OpenMP和CUDA支持,如果系统支持的话。 通过理解和使用这些组件,开发者能够在Ubuntu环境下构建和运行基于Java的计算机视觉应用,充分利用OpenCV提供的强大功能。
2025-03-25 23:02:28 29.12MB opencv java
1
编译好的opencv_hls库
2025-03-25 21:37:44 440.39MB opencv
1
车牌识别技术是计算机视觉领域中的一个重要分支,主要应用于交通监控、智能停车场系统、无人驾驶等领域。在本数据集中,我们关注的是"车牌识别数据集CCPD+CRPD训练数据集多种不同颜色角度等车牌",这显然是一份专门用于训练车牌识别算法的数据资源。 CCPD(Chinese City Parking Dataset)和CRPD(Chinese Rural Parking Dataset)是两个广泛使用的中国车牌识别数据集,分别涵盖了城市和农村环境下的车牌图像。这两个数据集提供了大量的真实场景下拍摄的车牌图片,包含了各种复杂的环境因素,如不同的光照条件、拍摄角度、车牌颜色以及背景干扰,旨在帮助算法在实际应用中具备更好的鲁棒性和准确性。 这个数据集的特点在于它包含五种不同颜色的车牌:黑色、蓝色、绿色、白色和黄色。在中国,不同颜色的车牌通常代表不同的车辆类型或用途。例如,蓝色车牌通常是私家车,绿色代表新能源汽车,黄色则是大型或重型车辆,而黑色车牌则通常与外交车辆或外资企业有关。因此,训练模型识别这些颜色的车牌对于实现全面的车牌识别系统至关重要。 训练数据集的子文件名为"train",这表明这个压缩包包含的是训练集,用于训练机器学习或深度学习模型。训练集通常包含已标记的样本,即每个车牌图像都与其对应的标签(即车牌号码)相关联。这种标注信息是监督学习的基础,让模型可以通过学习这些样本来理解车牌的特征,并学会区分不同的车牌号码。 在训练过程中,模型会尝试学习如何从不同角度、光照条件和颜色的图像中提取关键特征。这可能涉及到边缘检测、颜色直方图分析、形状识别等图像处理技术。此外,深度学习模型如卷积神经网络(CNN)能够自动学习这些特征,通过多层抽象来逐步提高识别精度。 为了优化模型性能,通常会采用数据增强技术。比如,可以对原始图像进行旋转、缩放、裁剪等操作,模拟更广泛的拍摄条件,进一步增强模型的泛化能力。同时,合理的损失函数和优化器选择也是训练过程中的关键环节,以确保模型能够有效地收敛并达到预期的识别效果。 总而言之,"车牌识别数据集CCPD+CRPD训练数据集多种不同颜色角度等车牌"提供了一个丰富的训练平台,有助于开发和改进车牌识别系统,使其能够在复杂环境下准确地识别各种颜色和角度的车牌,对于推动智能交通系统的进步具有重要意义。通过深入学习和优化,这样的数据集可以帮助我们构建出更智能、更准确的车牌识别技术,为实际应用场景提供强有力的支持。
2025-03-21 13:46:40 76.51MB 数据集
1
内容概要: 本文介绍了基于OpenCV的答题卡识别判卷系统,该系统能够自动识别和评分标准化考试的答题卡。文章首先概述了答题卡识别技术的重要性,尤其是在大规模考试中,它能够提高评分效率和准确性。接着,详细阐述了系统的工作原理,包括图像预处理、答题卡定位、选项识别和答案统计。文章介绍了如何使用OpenCV进行图像二值化、轮廓检测、形状匹配和像素分析来识别答题卡上的标记。最后,提供了一个简单的答题卡识别流程,包括图像采集、答题卡区域定位、选项区域识别和答案统计,并解释了代码的关键部分,如如何使用OpenCV进行图像处理和识别算法的实现。 使用场景和目标: 答题卡识别技术在教育考试、问卷调查和在线测试中具有广泛的应用。在教育考试中,该技术可以用于自动评分标准化选择题,减少人工评分的工作量和错误率。在问卷调查中,它可以快速统计调查结果,为市场分析提供即时数据。在线测试中,该技术可以实现即时反馈和评分,增强学习体验。此外,该技术还可以与电子学习平台集成,实现自动化的考试和评估流程。本文的目标是提供一个基于OpenCV的答题卡识别框架,使教育机构和研究人员能够快速构建和部署自动化评分系统
2025-03-06 15:50:46 3.08MB opencv python
1
内容概要:本文档详细介绍如何在C++和OpenCV环境下搭建基于YOLOv11的旋转框目标检测系统,涵盖环境配置指导、数据准备工作、代码实施细节以及系统特性和未来发展等方面的内容,提供了一个完整的项目解决方案。 适合人群:适用于具有基本OpenCV操作背景的研发工作者或者对目标检测技术有兴趣的学习者。 使用场景及目标:该检测系统可以应用于无人机监测、自动驾驶辅助等领域,在各种应用场景中提供精确的目标物体检测结果,尤其适用于存在高角度变化的环境中。 其他说明:该目标检测项目的源代码公开分享,用户可根据需求自由调参并扩展系统的功能性。此外,本文档也为进一步的功能优化提供了明确的方向建议。
2025-02-13 19:15:59 41KB OpenCV
1
赠送jar包:opencv-4.5.5-1.5.7.jar; 赠送原API文档:opencv-4.5.5-1.5.7-javadoc.jar; 赠送源代码:opencv-4.5.5-1.5.7-sources.jar; 赠送Maven依赖信息文件:opencv-4.5.5-1.5.7.pom; 包含翻译后的API文档:opencv-4.5.5-1.5.7-javadoc-API文档-中文(简体)版.zip; Maven坐标:org.bytedeco:opencv:4.5.5-1.5.7; 标签:bytedeco、opencv、中文文档、jar包、java; 使用方法:解压翻译后的API文档,用浏览器打开“index.html”文件,即可纵览文档内容。 人性化翻译,文档中的代码和结构保持不变,注释和说明精准翻译,请放心使用。
2025-01-10 15:12:02 26.39MB opencv 中文文档 jar包 java
1