曙光公司将专为百万亿次超级计算机设计的TC2600刀片服务器与AMD四核“巴塞罗那”处理器相结合,为北京航空航天大学打造出一套“高效能”的计算平台,该系统不仅实现了高达3.9万亿次每秒的峰值运算能力的突破,同时实现了教育科研平台的“高效能”计算,有高可靠性、高可扩展性、低能耗等特点。
2024-03-22 14:16:00 155KB
1
AMD四核皓龙处理器是业内首款真四核处理器,它以至高的性能、最佳的每瓦性能和较低的整体拥有成本在同类产品中脱颖而出,成为包括“徘徊者”在内的高性能计算系统的极佳之选。
2024-03-22 14:08:33 32KB
1
INEEL 实验室首席IT 设计师Eric Greenwade 说,“Sun Opteron 处理器的运行速度,比我们以前拥有的处理器快三至十倍,从而极大地提高了我们的工作效率。我们能够同时处理许多模型,这比我们过去的能力大数千倍。最后的结果是,我们能够处理规模比过去大10 到100 倍的问题,而只需要相当于过去十分之一的时间。所以,我们对取得科研成果的信心大大增强了。”
2024-03-22 13:50:07 117KB
1
不错的软件,可以用来计算焊缝及焊材用量。
2024-03-22 11:37:31 628KB
1
【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。
2024-03-20 19:12:30 1.04MB 毕业设计 课程设计 项目开发 资源资料
1
使用Cisco packet Tracer实现了子网划分实验
2024-03-20 13:16:45 131KB 子网划分 cisco
1
matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。 Matlab(Matrix Laboratory)是一种专为数值计算和科学与工程应用而设计的高级编程语言和环境。在算法开发和实现方面,Matlab具有以下一些好处: 1. 丰富的数学和科学函数库:Matlab提供了广泛的数学、信号处理、图像处理、优化、统计等领域的函数库,这些函数库可以帮助开发者快速实现各种复杂的数值计算算法。这些函数库提供了许多常用的算法和工具,可以大大简化算法开发的过程。 2. 易于学习和使用:Matlab具有简单易用的语法和直观的编程环境,使得算法开发者可以更快速地实现和测试他们的算法。Matlab的语法与数学表达式和矩阵操作非常相似,这使得算法的表达更加简洁、清晰。 3. 快速原型开发:Matlab提供了一个交互式的开发环境,可以快速进行算法的原型开发和测试。开发者可以实时查看和修改变量、绘制图形、调试代码等,从而加快了算法的迭代和优化过程。这种快速原型开发的特性使得算法开发者可以更快地验证和修改他们的想法。 4. 可视化和绘图功能:Matlab具有强大的可视化和绘图功能,可以帮助开发者直观地展示和分析算法的结果。开发者可以使用Matlab绘制各种图形、曲线、图像,以及创建动画和交互式界面,从而更好地理解和传达算法的工作原理和效果。 5. 并行计算和加速:Matlab提供了并行计算和加速工具,如并行计算工具箱和GPU计算功能。这些工具可以帮助开发者利用多核处理器和图形处理器(GPU)来加速算法的计算过程,提高算法的性能和效率
2024-03-18 19:13:27 369KB matlab
1
23/6/27: 参考笔记:https://blog.csdn.net/qq_43572058/article/details/131617080,了解如何处理磁化文件并获取磁斯格明子的位置和半径的粗略方法。 使用方式: 1.只需在main_skyTool.py中输入磁化文件所在的目录,和自己微磁模型的相关参数,和其它选项,,, 2.在此文件所在的目录下打开命令行并运行主文件main_skyTool.py即可,即输入python main_skyTool.py 3.会把从所有磁化文件中获取的所有斯格明子的信息按照文件读取顺序保存在一个文本文件“sky的位置和半径.txt”,该文件的第一列是文件顺序索引1,2,3,,,从第二列开始,每四列就是一个斯格明子的位置坐标(x,y,z)和半径,默认值-1表示无斯格明子信息。
2024-03-17 21:24:32 15KB
1
本站唯一符合2022河海大学水文预报课程设计要求的python代码 自动读取表格 以年为单位自动计算误差和确定性系数
2024-03-17 18:57:20 6KB 新安江模型 python
1
全书共分7章,包括引论、线性方程组求解、线性最小二乘问题、非对称特征值问题、对称特征问题和奇异值分解、线性方程组迭代方法及特征值问题迭代方法,本书不仅给出了数值线性代数的常用算法,而且也介绍了多重网格法和区域分解法等新算法,并指导读者如何编写数值软件以及从何处找到适用的优秀数值软件。   本书可作为计算数学和相关理工科专业一年级研究生的教材,也可作为从事科学计算的广大科技工作者的参考书。 第1章 引论  1.1 基本符号  1.2 数值线性代数的标准问题  1.3 一般的方法   1.3.1 矩阵分解   1.3.2 扰动理论和条件数   1.3.3 舍入误差对算法的影响   1.3.4 分析算法的速度   1.3.5 数值计算软件  1.4 例:多项式求值  1.5 浮点算术运算  1.6 再议多项式求值  1.7 向量和矩阵范数  1.8 第1章的参考书目和其他话题  1.9 第1章问题 第2章 线性方程组求解  2.1 概述  2.2 扰动理论  2.3 高斯消元法  2.4 误差分析   2.4.1 选主元的必要性   2.4.2 高斯消元法正式的误差分析   2.4.3 估计条件数   2.4.4 实际的误差界  2.5 改进解的精度   2.5.1 单精度迭代精化   2.5.2 平衡  2.6 高性能分块算法   2.6.1 基本线性代数子程序(blas)   2.6.2 如何优化矩阵乘法   2.6.3 使用3级blas改组高斯消元法   2.6.4 更多的并行性和其他性能问题  2.7 特殊的线性方程组   2.7.1 实对称正定矩阵   2.7.2 对称不定矩阵   2.7.3 带状矩阵   2.7.4 一般的稀疏阵   2.7.5 不超过o(n2)个参数的稠密矩阵  2.8 第2章的参考书目和其他的话题  2.9 第2章问题 第3章 线性最小二乘问题  3.1 概述  3.2 解线性最小二乘问题的矩阵分解   3.2.1 正规方程   3.2.2 qr分解   3.2.3 奇异值分解  3.3 最小二乘问题的扰动理论  3.4 正交矩阵   3.4.1 豪斯霍尔德变换   3.4.2 吉文斯旋转   3.4.3 正交矩阵的舍入误差分析   3.4.4 为什么用正交矩阵  3.5 秩亏最小二乘问题   3.5.1 用svd解秩亏最小二乘问题   3.5.2 用选主元的qr分解解秩亏最小二乘问题  3.6 最小二乘问题解法的性能比较  3.7 第3章的参考书目和其他话题  3.8 第3章问题 第4章 非对称特征值问题  4.1 概述  4.2 典范型  4.3 扰动理论  4.4 非对称特征问题的算法   4.4.1 幂法   4.4.2 逆迭代   4.4.3 正交迭代   4.4.4 qr迭代   4.4.5 使qr迭代有实效   4.4.6 海森伯格约化   4.4.7 三对角和双对角约化   4.4.8 隐式位移的qr迭代  4.5 其他的非对称特征值问题   4.5.1 正则矩阵束和魏尔斯特拉斯典范型   4.5.2 奇异矩阵束和克罗内克典范型   4.5.3 非线性特征值问题  4.6 小结  4.7 第4章参考书目和其他话题  4.8 第4章问题 第5章 对称特征问题和奇异值分解  5.1 概述  5.2 扰动理论  5.3 对称特征问题的算法   5.3.1 三对角qr迭代   5.3.2 瑞利商迭代   5.3.3 分而治之   5.3.4 对分法和逆迭代   5.3.5 雅可比法   5.3.6 性能比较  5.4 奇异值分解算法   5.4.1 双对角svd的qr迭代及其变形   5.4.2 计算双对角svd达到高的相对精度   5.4.3 svd的雅可比法  5.5 微分方程和特征值问题   5.5.1 toda格子   5.5.2 与偏微分方程的关系  5.6 第5章参考书目和其他话题  5.7 第5章问题 第6章 线性方程组迭代方法  6.1 概述  6.2 迭代法的在线(on-line)帮助  6.3 泊松方程   6.3.1 一维泊松方程   6.3.2 二维泊松方程 6.3.3 用克罗内克积表达泊松方程 6.4 解泊松方程方法小结  6.5 基本迭代法   6.5.1 雅可比法   6.5.2 高斯-塞德尔法 6.5.3 逐次超松弛法 6.5.4 模型问题的雅可比、高斯-塞德尔和sor(ω)的收敛性 6.5.5 雅可比、高斯-塞德尔和sor(ω)法明细的收敛准则   6.5.6 切比雪夫加速和对称sor(ssor)  6.6 克雷洛夫子空间方法   6.6.1 通过矩阵-向量乘法得到关于a的信息   6.6.2 利用克雷洛夫子空间kk解ax=b   6.6.3 共轭梯度法   6.6.4 共轭梯度法的收敛性分析   6.6.5 预条件   6.6.6 解ax=b的其他克雷洛夫子空间算法  6.7 快速傅里叶变换   6.7.1 离散傅里叶变换   6.7.2 用傅里叶级数解连续模型问题   6.7.3 卷积   6.7.4 计算快速傅里叶变换  6.8 块循环约化  6.9 多重网格法   6.9.1 二维泊松方程多重网格法概述   6.9.2 一维泊松方程的多重网格法详述  6.10 区域分解法   6.10.1 无交叠方法   6.10.2 交叠方法  6.11 第6章的参考书目和其他话题  6.12 第6章问题 第7章 特征值问题的迭代方法  7.1 概述  7.2 瑞利-里茨方法  7.3 精确算术运算的兰乔斯算法  7.4 浮点算术运算的兰乔斯算法  7.5 选择正交化的兰乔斯算法  7.6 选择正交化之外的方法  7.7 非对称特征值问题的迭代算法  7.8 第7章的参考书目和其他话题  7.9 第7章问题 参考文献(图灵网站下载) 索引
2024-03-17 18:39:09 2.64MB 数值计算
1