糖尿病视网膜病变竞赛的解决方案 这是Kaggle的竞赛,您的任务是将每个人的眼部检查分类为5种不同程度的糖尿病导致的疾病。 这是我用来处理原始图像的代码的存储库,即卷积神经网络模型(使用keras构建)。 它主要基于论坛中提供的一个基准。 执行以下步骤: 仅使用普通图像处理到256X256,未使用其他方式调整颜色等。 通过增加1、2、3和4类来平衡不同类的图片。 使用过的VGG风格架构,使用开普勒K20c GPU,以10个时期进行训练,批量大小为32。 它运行约2天。 由于输出是有序的(疾病的阶段),因此不作为分类问题运行,而是作为回归问题运行。 将原始输出转换为疾病阶段标签。 天真的,我们可以转换到接近阶段。 但是,根据原始数据集的比例对原始分数进行排名会产生更好的Kappa分数。 最后,该模型在私有数据集上得出的Kappa为0.38,由于辍学,该结果在公共得分上接近0.3
2021-12-28 16:07:35 278KB Python
1
Kaggle房屋价格预测完整资源-Kaggle-house-prices-advanced-regression--techniques,包括train.csv test.csv sample_submission.csv data_description.txt
2021-12-28 13:32:43 176KB Kaggle house prices 房屋价格预测
1
美国婴儿姓名数据是一个来自美国社会保障应用的数据,从国家和州两个维度对新生婴儿姓名进行统计,为了保障个人隐私相同姓名的婴儿在5名以上。
2021-12-27 14:41:29 149.4MB 婴儿姓名 Kaggle
1
选题背景 Titanic生存概率预测是Kaggle平台上的经典竞赛项目,泰坦尼克号成员存活的数据集非常适合新手开始作为机器学习项目和Kaggle竞赛的练手。我们将在该项目中探索具备何种特征的人在此次海滩中幸存的几率更高,并通过改建机器学习模型和深度学习模型来预测乘客的生存率。Titanic项目的描述如下所示: 泰坦尼克号的沉没是历史上最声明远扬的航海事件 1912年4月15日,在她的处女航中,被广泛认为的“沉没” RMS泰坦尼克号与冰山相撞后沉没。 不幸的是,船上没有足够的救生艇供所有人使用,导致2224名乘客和机组人员中的1502人死亡 虽然幸存有一些运气,但似乎有些人比其他人更有可能生存 在这一挑战中,我们要求您建立一个预测模型来回答以下问题:“什么样的人更有可能生存?” 您可以使用乘客数据(即姓名,年龄,性别,社会经济舱等)来进行预测 开发环境 操作系统:Macos Python版本:3.7.4 Anaconda版本:4.9.2 tensorflow版本:2.1.0 keras版本:1.1.0 1 数据源集数据处理 1.1 数据源 数据集来自Kaggle网站提供的数据集,Kaggle提供的乘员数据分为两个部分: 训练集(train.csv) 测试集(test.csv) 训练集将用于构建我们的机器学习/深度学习模型。并且在训练集中对于每位乘客我们会有表示该乘客是否存活的label,也就是survival字段。在训练集中会给出每一位乘客的特征,我们需要从这些乘客的特征当中学得一些知识,或者可以使用特征工程来创建新的特征来帮助模型的构建 测试集数据将用来评判我们模型的表现。因此对于测试集中的每一位乘客没有代表该乘客是否存活的label,我们的模型需要根据每一位乘客的特征值来输出相应的label,真实的label将由kaggle网站保留
2021-12-27 12:03:14 418KB kaggle
遗传突变分类竞赛【Kaggle竞赛】.zip
2021-12-26 17:39:26 158.34MB 遗传突变分类
1
医疗CT影像、年龄和对比标注数据医疗CT影像、年龄和对比标注数据医疗CT影像、年龄和对比标注数据医疗CT影像、年龄和对比标注数据
2021-12-26 17:30:11 361.87MB 医疗CT影像 年龄 对比标注数据
1
根据安检人体扫描成像预测威胁竞赛根据安检人体扫描成像预测威胁竞赛根据安检人体扫描成像预测威胁竞赛根据安检人体扫描成像预测威胁竞赛
1
多标签文本分类 Kaggle有毒评论挑战 随着可用数据的不断增加,迫切需要对数据进行组织,而现代分类问题通常涉及与单个实例同时关联的多个标签的预测。 这种称为多标签分类的任务就是这样的任务,它在许多现实世界中的问题中无所不在。 在这个项目中,以Kaggle问题为例,我们探索了多标签分类的不同方面。 该项目的鸟瞰图: 第1部分:多标签分类概述。 第2部分:问题定义和评估指标。 第3部分:探索性数据分析(EDA)。 第4部分:数据预处理。 第5部分:多标签分类技术。 有关此项目的详细博客,请参见[ ]
2021-12-26 00:24:26 781KB JupyterNotebook
1
基于kaggle气胸X光比赛原始数据,对RLE气胸标注标签转储mask图和json标注可读文件,JPEG胸片图像。公开代码基于python,可用于后续的分类、检测、分割等等任务数据输入
2021-12-25 19:13:18 575.56MB 气胸 pneumothorax kaggle RLE
机器学习预测住房价格 房价-高级回归技术的Kaggle竞争:使用机器学习来预测爱荷华州的房价。 查找kaggle竞赛的链接: ://www.kaggle.com/c/house-prices-advanced-regression-techniques 该存储库有几个文件: Code_Predicting房屋价格.py:是带有项目代码的jupyter笔记本。 它还具有注释,以帮助您理解开始代码的思考过程。 预测房价艾姆斯,爱荷华州:pptx:介绍该项目的简报。 它面向具有一定技术知识的公众。 预测房价Iowa.docx.pdf:博客文章,解释了该项目的技术和业务方面。 train.csv:用于项目的数据。 它已上传到github上,为您提供方便,也可以在Kaggle的网页上获取。
2021-12-25 18:51:46 2.4MB JupyterNotebook
1