中国科学院计算技术研究所、清华大学、北京大学等科研机构和大学的高级专家,拥有丰富的 科研及工程技术经验,长期从事深度学习、人工智能、机器学习、计算机视觉等领域的教学与研究工 作。
2024-02-20 17:53:01 1.07MB 深度学习 机器学习 python
1
Pytorch教程.pdf
2024-02-20 16:16:12 34.22MB 深度学习
1
(1)嵌入式系统-linux (2)使用tvm的opencl后端调用mali-gpu (3)rk3588的mali-gpu安装包:G610
2024-02-20 15:37:00 12.04MB 人工智能 深度学习
1
2.1.2浅层学习和深度学习 机器学习的历史阶段的划分可谓仁者见仁智者见智,从不同的角度可以划分为不同 的阶段。按机器学习模型的层次结构来划分,20世纪80年代至今,机器学习的发展可 以说经历了两个阶段:浅层学习(shallow le锄ing)和深度学习(deep leaming)【27】。 大多数传统的机器学习和信号处理技术,都是利用浅层结构的架构‘301。例如高斯混 合模型(GMMs)、线性或非线性动力系统、条件随机场(CRFs)、最大熵(MaXEnt) 模型、支持向量机(SVMs)、Logistic回归、核回归、多层感知机(MLPs)等等都是 浅层结构。这些结构通常包含一层或两层的非线性特征变换,可以看成是具有一层隐含 层或者没有隐含层的结构。浅层结构在解决一些简单的或者受限的问题中显示出了有效 性,但由于其有限的建模和表征能力,在处理更为复杂的实际的应用时,如人的语音、 自然的声音和语言、自然图像和视觉场景这些自然信号时非常困难。 深度网络,是含有多个隐含层结构的网络。通过引入深度网络,我们可以通过学习 一种深层的非线性网络,来实现复杂函数的逼近,从而计算更为复杂的输入特征【311。由 于每一个隐含层可以对上一层的输出进行非线性变换,因此深度网络拥有比浅层网络更 为优异的表达能力,例如可以通过学习得到更为复杂的函数关系,并且表现出了从少数 样本中学习数据的本质特征的能力。 深度网络最主要的优点在于,它能用更加简单的方式来表示比传统浅层网络大得多 的函数集合,而多层的优势是可以利用较少的参数来表示复杂的函数关系。如图所示, 要表达结构复杂的函数蛔(伽《唧(s加3(x)))),用传统的单层结构很难简洁地表示,而 用多隐含层的深层结构,可以用较少的参数表示较为复杂的函数,用多层的简单结构 s伽(工),x3,e。,cDs(x),抛(x)来表示上述复杂函数容易很多。 12 zkq 20150924 万方数据
2024-02-19 10:46:03 4.42MB 深度学习
1
MATLAB开发的LSTM深度学习网络来预测时间序列的工具箱-支持单时间序列和多元时间序列的预测
2024-02-18 16:01:02 4.25MB lstm MATLAB 深度学习 长短期记忆网络
1
yolov8n-seg.pt,yolov8s-seg.pt,yolov8m-seg.pt,yolov8l-seg.pt,yolov8x-seg.pt分割预训练权重文件
2024-02-17 19:52:20 284.3MB 图像分割 深度学习 人工智能
1
美国凯斯西储大学(CWRU)数据集:文件名称为数据集类型缩写,便于文件检索
2024-02-08 17:03:44 234.44MB 故障诊断 数据集 深度学习 机器学习
1
神经网络与深度学习讲义20151211.pdf
2024-02-04 10:55:31 688KB 深度学习
1
2023毕业设计,基于YOLOv5,Qt和Opencv设计的一款图像处理软件,有问题可以私聊我。
2024-02-02 18:47:48 122.81MB 深度学习 图像处理 opencv
1
每个大点又包括许多的小点,所以学起来还挺费劲的。可能需要一定的学历要求,有一定的知识基础,特别是数学基础,这是必备的知识。 学习时建议先从简单的开始。如果从最难的部分开始的话,很有可能你会气馁,会放弃,所以,不如在学习过程中制定一些小小的可实现的目标,让自己充满动力。 以下是从在这领域学过的大佬得到的经验。 1、选择一种编程语言(至少要学会一门语言) 首先,你得学会一种编程语言。虽然编程语言的选择有很多种,但大部分人都会选择从Python开始,因为Python的库更适用于机器学习。它提供了高效的高级数据结构,还能简单有效地面向对象编程,后面可以学学C或者C++。 “Python是一个不错的选择”,它扮演着科学计算和数据分析的重要角色(拥有如Numpy和SciPy这样的库),同时针对不同的算法,有丰富的库支撑。
1