为了提高风电场短期风速预测的精度,提出了一种基于自适应噪声的完整集成经验模态分解(CEEMDAN)-排列熵(PE)和量子遗传算法(QGA)优化BP神经网络的短期风速预测模型。首先采用CEEMDAN对原始风速时间序列进行分解,降低不同特征尺度序列间的相互影响;其次,为了减少计算规模,对分解得到的各个分量序列分别计算排列熵,将熵值相近的分量进行叠加形成新的序列;最后,针对BP神经网络在初始化权值和阈值的选取上存在随机性的问题,采用QGA对BP参数进行优化,分别对每个新的序列进行预测并将预测结果进行叠加得到最终的预测值。实例仿真结果表明,该组合模型提高了预测的精度,减小了误差,具有实际意义和工程应用价值。
2021-11-22 18:54:02
591KB
风速预测
1