本工具为Matlab中的libsvm支持向量机工具箱,版本为3.23,内含heart_scale的测试集。
2019-12-21 21:37:23 851KB libsvm heart-scale Matlab
1
台湾大学林智仁教授最新版本的libsvm工具箱,在可用于解决多类别的模式分类问题。
2019-12-21 21:36:33 568KB libsvm3.20
1
这是我从网络上下载到的把数据转化为libsvm要求格式的excel文件,拿出来给大家共享一下,共同学习共同进步。
2019-12-21 21:35:06 31KB libsvm
1
文本挖掘tmSVM开源项目集成libSVM和liblinear包含Python和Java两种版本带PDF源码参考文档 简介 文本挖掘无论在学术界还是在工业界都有很广泛的应用场景。而文本分类是文本挖掘中一个非常重要的手段与技术。现有的分类技术都已经非常成熟,SVM、KNN、Decision Tree、AN、NB在不同的应用中都展示出较好的效果,前人也在将这些分类算法应用于文本分类中做出许多出色的工作。但在实际的商业应用中,仍然有很多问题没有很好的解决,比如文本分类中的高维性和稀疏性、类别的不平衡、小样本的训练、Unlabeled样本的有效利用、如何选择最佳的训练样本等。这些问题都将导致curve of dimension 、 过拟合等问题。 这个开源系统的目的是集众人智慧,将文本挖掘、文本分类前沿领域效果非常好的算法实现并有效组织,形成一条完整系统将文本挖掘尤其是文本分类的过程自动化。该系统提供了Python和Java两种版本。 主要特征 该系统在封装 libsvm 、 liblinear 的基础上,又增加了 特征选择 、 LSA特征抽取 、 SVM模型参数选择 、 libsvm格式转化模块 以及一些实用的工具。其主要特征如下: 封装并完全兼容*libsvm、liblinear。 基于Chi*的feature selection 见 feature_selection 基于Latent Semantic Analysis 的feature extraction 见 feature_extraction 支持Binary,Tf,log(tf),Tf*Idf,tf*rf,tf*chi等多种特征权重 见 feature_weight 文本特征向量的归一化 见 Normalization 利用交叉验证对SVM模型参数自动选择。 见 SVM_model_selection 支持macro-average、micro-average、F-measure、Recall、Precision、Accuracy等多种评价指标 见evaluation_measure 支持多个SVM模型同时进行模型预测 采用python的csc_matrix支持存储大稀疏矩阵。 引入第三方分词工具自动进行分词 将文本直接转化为libsvm、liblinear所支持的格式。 使用该系统可以做什么 对文本自动做SVM模型的训练。包括Libsvm、Liblinear包的选择,分词,词典生成,特征选择,SVM参数的选优,SVM模型的训练等都可以一步完成。 利用生成的模型对未知文本做预测。并返回预测的标签以及该类的隶属度分数。可自动识别libsvm和liblinear的模型。 自动分析预测结果,评判模型效果。计算预测结果的F值、召回率、准确率、Macro,Micro等指标,并会计算特定阈值、以及指定区间所有阈值下的相应指标。 分词。对文本利用mmseg算法对文本进行分词。 特征选择。对文本进行特征选择,选择最具代表性的词。 SVM参数的选择。利用交叉验证方法对SVM模型的参数进行识别,可以指定搜索范围,大于大数据,会自动选择子集做粗粒度的搜索,然后再用全量数据做细粒度的搜索,直到找到最优的参数。对libsvm会选择c,g(gamma),对与liblinear会选择c。 对文本直接生成libsvm、liblinear的输入格式。libsvm、liblinear以及其他诸如weka等数据挖掘软件都要求数据是具有向量格式,使用该系统可以生成这种格式:label index:value SVM模型训练。利用libsvm、liblinear对模型进行训练。 利用LSA对进行Feature Extraction*,从而提高分类效果。 开始使用 QuickStart里面提供了方便的使用指导 如何使用 该系统可以在命令行(Linux或cmd中)中直接使用,也可以在程序通过直接调用源程序使用。 在程序中使用。 #将TMSVM系统的路径加入到Python搜索路径中 import sys sys.path.insert(0,yourPath+"\tmsvm\src") import tms #对data文件夹下的binary_seged.train文件进行训练。 tms.tms_train(“../data/binary_seged.train”) #利用已经训练好的模型,对对data文件夹下的binary_seged.test文件预测 tms.tms_predict(“../data/binary_seged.test”,”../model/tms.config”) #对预测的结果进行分析,评判模型的效果 tms. tms_analysis(“../tms.result”) 在命令行中调用 #对data文件夹下的binary_seged.train文件进行训练。 $python auto_train.py [options] ../data/binary_seged.train #利用已经训练好的模型,对对data文件夹下的binary_seged.test文件预测 python predict.py ../data/binary_seged.train ../model/tms.config #对预测的结果进行分析,评判模型的效果 $python result_anlaysis.py ../tms.result 上面的调用形式都是使用系统中默认的参数,更具体、灵活的参数见程序调用接口 输入格式 label value1 [value2] 其中label是定义的类标签,如果是binary classification,建议positive样本为1,negative样本为-1。如果为multi-classification。label可以是任意的整数。 其中value为文本内容。 label 和value以及value1 和value2之间需要用特殊字符进行分割,如”\t” 模型输出 模型结果会放在指定保存路径下的“model”文件夹中,里面有3个文件,默认情况下为dic.key 、 tms.model和tms.config 。 其中dic.key为特征选择后的词典; tms.model为训练好的SVM分类模型; tms.config为模型的配置文件,里面记录了模型训练时使用的参数。 临时文件会放在“temp”文件夹中。里面有两个文件:tms.param和tms.train。 其中tms.param为SVM模型参数选择时所实验的参数。 tms.train是供libsvm和liblinear训练器所使用的输入格式。 源程序说明 src:即该系统的源代码,提供了5个可以在Linux下可以直接调用的程序:auto_train.py、train.py、predict.py为在Linux下通过命令行调用的接口。 tms.py 为在程序中调用的主文件,直接通过import tms 即可调用系统的所有函数。其他文件为程序中实现各个功能的文件。 lsa_src:LSA模型的源程序。 dependence:系统所依赖的一些包。包括libsvm、liblinear、Pymmseg在Linux32位和64位以及windows下的支持包(dll,so文件)。 tools:提供的一些有用的工具,包括result_analysis.py等。 java:java版本的模型预测程序, 项目重要更新日志 2012/09/21 针对linux下的bug进行修正。重新生成win和linux版本的。 2012/03/08 增加stem模块,并修正了几个Bug。 2011/11/22 tmsvm正式发布。 联系方式 邮箱:zhzhl202@163.com Thanks 本系统引用了libsvm、liblinear的包,非常感谢Chih-Jen Lin写出这么优秀的软件。本系统还引用了Pymmseg,非常感谢pluskid能为mmseg写出Python下可以直接使用的程序 从最初的想法萌生到第一版上线,中间试验了很多算法,最终因为效果不好删掉了很多代码,在这期间得到了许多人的帮助,非常感谢杨铮、江洋、敏知、施平等人的悉心指导。特别感谢丽红一直以来的默默支持。
2019-12-21 21:32:11 3.39MB 文本挖掘 tmSVM libSVM 支持向量机
1
博文以图文并茂的方式 细致讲解了如何在Visual Studio(VS2012 & VS2010 使用 libsvm (libsvm 3 18)工具箱的过程 目前互联网搜索数据libsvm工具箱在 VS 中以C++工程呈现的讲解非常稀少而且对初学者有一定的难度 所以在笔者完成工作后写了这篇小记或称为简单教程 呈现给大家 此文件是与教程配套的 cpp 文件 参考博文请移步:http: blog csdn net u014691453 article details 40393137">博文以图文并茂的方式 细致讲解了如何在Visual Studio(VS2012 & VS2010 使用 libsvm (libsvm 3 18)工具箱的过程 目前互联网搜索数据libsvm工具箱在 VS 中以C++工程呈现的讲解非常稀少而且对初学者有一定的难度 所以在笔者完成工 [更多]
2019-12-21 21:31:06 4.81MB libsvm VS2012 VisualStudio
1
通过使用宏命令FormatDataLibsvm.xls 将数据转换为libsvm格式
2019-12-21 21:24:28 24KB Format Data Libsvm
1
2019-12-21 21:23:40 622KB matlab SVM工具包
1
测试libsvm安装成功与否,这个数据格式是matlab版本的,而下载的libsvm压缩包内文件为C++文件格式
2019-12-21 21:21:07 28KB matlab heart_scale libsvm
1
利用Libsvm进行SVM分类(python)非常详细的说明文档,含两个文档说明,方便大家参考学习。
2019-12-21 21:16:47 750KB Libsvm SVM Python
1
FormatDataLibsvm.xls使用步骤: 1、用office打开FormatDataLibsvm.xls 2、点击开发工具,点宏安全设置,选择启用宏。 3、将数据复制粘贴到sheet1。 4、粘贴的数据格式为:属性1 属性2......类别。 5、点击"开发工具"-->"宏"-->执行FormatDatatoLibsvm,然后执行即可。
2019-12-21 21:15:48 24KB 数据格式转换
1