这是 ShowMeAI 持续分享的速查表系列!本速查表是《数据科学家学习路线图》,作者与硅谷多家顶级科技公司的高级数据科学家、数据科学经理们进行了交谈,并从这些对话中总结了经验,绘制了这张路线图。每个有兴趣进入数据科学领域的人,可以根据这张路线图有目标和重点地进行学习。
1
这是 ShowMeAI 持续分享的速查表系列!《2022年人工智能专家成长路线图》是一组图表,展示了成为数据科学、机器学习工程师或人工智能专家的成长路径,包含数据科学路线图、机器学习路线图、深度学习路线图、数据工程师路线图、大数据工程师路线图等 7 个主题,可视化效果非常酷炫!
2023-01-01 10:24:35 634KB 机器学习 深度学习 大数据 数据分析
1
小米妙享中心目前最新版 AIoT_master_3.2.0.296_2acf4b05
2022-12-31 18:03:45 273.26MB 小米 妙享中心
1
这里是 ShowMeAI 持续分享的【开源eBook】系列!内容覆盖机器学习、深度学习、数据科学、数据分析、大数据、Keras、TensorFlow、PyTorch、强化学习、数学基础等各个方向。整理自各平台的原作者公开分享(审核大大请放手) ◉ 简介:本书对不确定条件下的决策算法作了广泛的介绍,内容涵盖了与决策有关的各种主题,介绍了基本的数学问题公式和解决这些问题的算法。 ◉ 目录: 第一部分:概率推理 - 表征 - 推理 - 参数学习 - 结构学习 - 简单决策 第二部分:顺序问题 - 精确解法 - 近似值函数 - 在线规划 - 政策搜索 - 政策梯度估计 - 政策梯度优化 - 角色批判方法 - 政策验证 第三部分:模型的不确定性 - 探索和利用 - 基于模型的方法 - 无模型的方法 - 模仿学习 第四部分:状态的不确定性 - 信念 - 准确的信念状态规划 - 离线信念状态规划 - 在线信念状态规划 - 控制器抽象 第五部分:多Agent系统 - 多Agent推理 - 序列问题 - 状态的不确定性 - 协作代理
2022-12-31 14:24:18 6.93MB 人工智能 算法 机器学习 深度学习
1
这里是 ShowMeAI 持续分享的【开源eBook】系列!内容覆盖机器学习、深度学习、数据科学、数据分析、大数据、Keras、TensorFlow、PyTorch、强化学习、数学基础等各个方向。整理自各平台的原作者公开分享(审核大大请放手) ◉ 简介:本书作者 Ricardo M. Czekster。书籍讲解了马尔可夫链及基本求解方法,包含Markov Chains、DTMC、CTMC等章节。可以在 https://github.com/czekster/markov 页面找到本书的基础材料,例如C编程代码和解决方案、MATLAB脚本、本书提供的示例的棱柱模型(CTMC/DTMC)等。 ◉ 目录: 第1章:Markov Chains(马尔科夫链) 第2章:DTMC(Discrete Time Markov Chains) 第3章:CTMC(Continuous Time Markov Chains) 第4章:More projects and models(更多项目与模型)
2022-12-31 12:25:23 467KB 人工智能 马尔科夫链 数学 机器学习
1
此函数计算概率密度函数使用变量变换的非中心 Beta 分布根据非中心 F 的所需密度函数,包括已经在 Matlabs 统计工具箱中。 用法[ pz ] = ncbeta (x, a, b, lambda ) %要使用给出 IID 卡方 RV 比率的直方图进行测试,请计算: y(1:50)=-sqrt(10);y(51:100)=+sqrt(10); znum = ncx2rnd(ones(5e4,1), y'*y); z = znum./(znum + ncx2rnd(99*ones(5e4,1), 0)); [N,b] = hist(z,floor(sqrt(length(z)))); N=N./trapz(b,N); bar(b, N,'facecolor','k') 坚持,稍等plot(r, ncbeta (r, 1, 99, y'*y),'linewidth',4,'r
2022-12-31 01:11:33 2KB matlab
1
这是 ShowMeAI 持续分享的速查表系列!本系列速查表包含 200 多张知识卡片,分为『计算机科学』『机器学习』『计算机视觉和深度学习基础』『计算机视觉和深度学习精选专题』4个主题,用以回顾多年的 ML 研究、课程和学习中的所有内容,并为机器学习工程师的面试做准备。 这个文件是『计算机视觉和深度学习精选专题』主题(其他部分的下载链接见评论区),包含以下部分: Object Detection / Segmentation(目标检测,目标分割) Generative Modeling: GANS and VAEs(生成模型) Data Imbalance(数据不平衡) Few-Shot Learning Explainable AI(可解释人工智能) Security / Adversarial Attacks Efficient Deep Learning(高效深度学习) 3D Deep Learning(3D深度学习) Full Stack Deep Learning(全栈深度学习) Machine Learning Implementation(机器学习实现)
1
这是 ShowMeAI 持续分享的速查表系列!本速查表是《数据科学家知识要点图》。数据科学、机器学习、大数据分析……如果我们想成为一名数据科学家,应该如何开始呢?需要了解哪些工具和技术? 这份速查表用“地铁图”的可视化方式,描绘了成为数据科学家的学习路径。每个领域表示为一条“地铁线”,内容主题按照序号标示为一个个车站。你可以选择一条线路,搭乘地铁并穿过所有车站(主题),最终到达目的地或者中途切换到下一条线路。
1
这是 ShowMeAI 持续分享的速查表系列!本系列速查表包含 200 多张知识卡片,分为『计算机科学』『机器学习』『计算机视觉和深度学习基础』『计算机视觉和深度学习精选专题』4个主题,用以回顾多年的 ML 研究、课程和学习中的所有内容,并为机器学习工程师的面试做准备。 这个文件是『计算机视觉和深度学习基础』主题(其他部分的下载链接见评论区),包含以下部分: Low Level / Classical Techniques in Vision And Image Processing(视觉和图像处理中的低层次/经典技术) Deep Learning Fundamentals(深度学习基础) Seminal & Foundational Topics in Deep Learning(深度学习中的标志性和基础性课题) Neural Networks Designed for Sequential Data (为序列数据设计的神经网络 Transfer Learning(迁移学习) Unsupervised & Self-Supervised Learning(无监督和自我监督的学习)
1
这是 ShowMeAI 持续分享的速查表系列!本系列速查表包含 200 多张知识卡片,分为『计算机科学』『机器学习』『计算机视觉和深度学习基础』『计算机视觉和深度学习精选专题』4个主题,用以回顾多年的 ML 研究、课程和学习中的所有内容,并为机器学习工程师的面试做准备。 这个文件是『计算机科学』主题(其他部分的下载链接见评论区),包含以下部分: PL Fundamentals(PL基础知识) Data Structures & Algorithms(数据结构和算法) Bit Manipulations(位操作) Time/Space Complexity(时间/空间复杂度)
1