参照官方文档AN040 以及一个参考链接 程序: bootloadKEIL工程中的Target中的ROM设置为0x08000000开始地址 大小0x80000 app KEIL工程中的Target中的ROM设置为0x08010000开始地址 大小0x30000
2024-09-11 18:44:01 56.52MB GD32 bootload
1
该资源是vue实战专栏专用项目,是vue实战讲解用到的项目代码,包含后端API项目、前端VUE项目和数据库,是配合实战讲解所用。是《从vue小白到高手,从一个内容管理网站开始实战开发第五天,登录功能后台功能设计--数据库与API项目》讲解中用到的项目。 数据库是SQL server 2014、API项目是.NET Core项目,框架是.NET6.0,数据库包含数据库文件和数据库创建脚本,数据库使用需要在SQL server 2014中使用。 .NET Core项目是使用visual studio 2022 创建的,需要使用visual studio 2022”进行打开。 vue项目是使用HBuilder X创建的,vue版本是vue2.0,界面使用是element ui 2.0 进行开发的,个版本内容都在项目中有所介绍,下载后可以自行查看。 本项目仅适合学习的小白和想学vue实战的开发人员,有经验的开发人员可以绕道。 下载学习的同学请配合《从vue小白到高手,从一个内容管理网站开始实战开发第五天,登录功能后台功能设计--数据库与API项目》进行学习,只看项目很可能会不知道干什么。
2024-09-11 16:03:40 33.72MB vue.js .NETCore sqlserver
1
NVIDIA GeForce GT 710 显卡驱动,win10和win11都支持。64位的哦! NVIDIA官网下载的!
2024-09-11 10:55:00 707.72MB windows
1
尚书六号汉字表格识别系统是款不错的图像文字识别软件,支持tiff、bmp、jpg等格式的识别,可以对彩色、灰度图像文件直接进行识别,与此同时,尚书六号完善了表格识别功能,各式各样的表格几乎都可以原封不动的由图片格式转变为可以自由编辑的文字格式。 “尚书六号”可以对彩色、灰度图像文件直接进行识别;尚书六号支持更多的扫描文件格式,例如tiff、bmp和jpg格式;与此同时,尚书六号完善了表格识别功能,各式各样的表格几乎都可以原封不动的由图片格式转变为可以自由编辑的文字格式。
2024-09-10 17:09:50 38.61MB
1
在本项目中,“Volve-field-machine-learning”是一个专注于利用机器学习技术分析北海Volve油田的公开数据集的实践案例。2018年,挪威石油公司Equinor出于促进学术和工业研究的目的,发布了这个丰富的数据集,为油气田的研究带来了新的机遇。这个数据集包含了与地下地质特征、油田运营及生产相关的各种信息,为研究人员提供了深入理解油气田开采过程的宝贵资源。 Volve油田的数据集涵盖了多个方面,包括地质模型、地震数据、井测数据、生产历史等。这些数据可以用于训练和验证机器学习模型,以解决诸如储量估计、产量预测、故障检测等油气田管理中的关键问题。通过机器学习,我们可以挖掘出隐藏在大量复杂数据中的模式和规律,从而优化生产决策和提高效率。 在探索这个数据集时,Jupyter Notebook被用作主要的分析工具。Jupyter Notebook是一款交互式计算环境,支持编写和运行Python代码,非常适合数据预处理、可视化和建模工作。用户可以在同一个环境中进行数据探索、编写模型和展示结果,使得整个分析过程更为直观和透明。 在这个项目中,可能涉及的机器学习方法包括监督学习、无监督学习以及深度学习。例如,监督学习可以用来建立产量预测模型,其中历史产量作为目标变量,而地质特征、井参数等作为输入变量;无监督学习如聚类分析可以用于识别相似的井或地质区域,以便进行更精细化的管理;深度学习模型如卷积神经网络(CNN)可以处理地震数据,提取地下结构的特征。 在Volve-field-machine-learning-main文件夹中,很可能包含了一系列的Jupyter Notebook文件,每个文件对应一个特定的分析任务或机器学习模型。这些文件将详细记录数据清洗、特征工程、模型选择、训练过程以及结果评估的步骤。通过阅读和复现这些Notebook,读者可以学习到如何将机器学习应用于实际的油气田数据,并从中获得对数据驱动决策的理解。 这个项目为油气行业的研究者和工程师提供了一个实战平台,通过运用机器学习技术,他们能够深入理解和优化Volve油田的运营,同时也为其他类似油田的数据分析提供了参考。随着大数据和人工智能技术的不断发展,这种数据驱动的决策方式将在未来的能源行业中发挥越来越重要的作用。
2024-09-10 15:22:37 7.93MB JupyterNotebook
1
matlab优化微分方程组代码自述文件 这些数据集的目的是将它们用于在Pyhon中使用机器学习库及其派生概念验证(POC)进行测试。 由于PyTorch具有与图形处理单元或GPU一起使用的内置功能,因此我们期望在开始全面移植MRST之前进行演示,基于PyTorch GPU的张量可以显着减少储层模拟期间的计算时间。 评价概念验证 步骤如下: 找到构成MRST求解器代码的偏微分方程(PDE)。 使用Matlab和Octave测试求解器的运行时间。 最新的《使用MATLAB进行储层模拟入门》一书(Knut-Andreas Lie的Octave )中提供了一些测试代码。 见附录。 正在Matlab和Octave下测试代码的性能。 代码将发布在单独的存储库中。 使用PyTorch for GPU复制Python中的功能。 将Matlab代码转换为PyTorch 测量原始MRST求解器的计算时间。 如果在PyTorch计算时间快10到100,我们将继续将更多的Matlab代码转换为基于PyTorch张量的计算。 数据集 MRST(下载) 固相萃取9 固相萃取10 案例B4 赛格 OPM 固相萃取1
2024-09-10 15:15:19 99.4MB 系统开源
1
在MATLAB环境中,滤波器设计是数字信号处理中的核心任务之一。本项目专注于创建高通、低通和陷波滤波器,这些都是信号处理领域常见的滤波器类型。MATLAB提供了一系列强大的工具和函数来设计和分析这些滤波器,以满足不同应用的需求。 我们来看高通滤波器。高通滤波器允许高频信号通过,而衰减或阻止低频信号。这在去除噪声或提取高频成分时非常有用。MATLAB中的`fir1`和`iirdesign`函数可用于设计线性和非线性的高通滤波器,分别用于 FIR(有限 impulse response)和 IIR(无限 impulse response)滤波器。例如,`fir1(n, cutoff)`可以设计一个FIR高通滤波器,其中`n`是滤波器阶数,`cutoff`是截止频率。 低通滤波器则相反,它允许低频信号通过,而衰减或阻止高频信号。这对于平滑信号或去除高频噪声很有用。MATLAB中的`fir1`和`iirdesign`同样适用于低通滤波器的设计。例如,`iir1(order, cutoff,ftype)`可以设计一个IIR低通滤波器,其中`order`是滤波器阶数,`cutoff`是截止频率,`ftype`可以是Butterworth、Chebyshev等滤波器类型。 陷波滤波器,又称为带阻滤波器,其目的是在特定频率范围内阻塞信号,同时保持其他频率段的信号传输。这在去除特定干扰频率时特别有效。MATLAB的`firnotch`函数可以用来设计陷波滤波器,其中用户可以指定中心频率和带宽。 在MATLAB中,滤波器的设计通常涉及以下几个步骤: 1. 定义滤波器类型(高通、低通、陷波)和滤波器特性(Butterworth、Chebyshev等)。 2. 设置参数,如截止频率、阶数、通带和阻带的衰减等。 3. 使用相应的设计函数创建滤波器系数。 4. 应用滤波器到信号上,例如使用`filter`函数。 5. 分析滤波器性能,如频率响应、阶数、群延迟等,可以使用`freqz`、`bode`等函数。 在提供的`High%20Low%20Notch%20Filters.mltbx`和`High%20Low%20Notch%20Filters.zip`文件中,可能包含了一个MATLAB工作空间的自定义工具箱或者滤波器设计的示例代码。这些资源可以帮助用户更直观地理解和应用上述滤波器设计方法。通过加载这个`.mltbx`文件,用户可以访问预定义的滤波器函数和示例,进一步探索和实践MATLAB滤波器设计。 MATLAB提供了丰富的工具和函数,使得设计和实现高、低和陷波滤波器变得方便快捷。无论是学术研究还是工业应用,理解并熟练掌握这些滤波器设计方法都对提升信号处理能力至关重要。
2024-09-10 15:05:39 52KB matlab
1
在电子设计领域,ADS(Advanced Design System)是一款广泛使用的射频和微波电路设计软件,由Keysight Technologies(原Agilent Technologies)开发。本资源集合是针对ADS软件的一个实用工具包,特别关注于功率放大器的建模和仿真。标题中的“MRF8P9040N模型”和“RF_POWER模型”是两种关键的模拟组件,它们对于理解和设计射频功率放大器至关重要。 MRF8P9040N是一款高性能的功率晶体管,常用于无线通信系统的功率放大环节。其模型文件(MRF8P9040N_MDL_ADS.zip)包含该器件的详细电气特性,使得用户能在ADS环境下进行精确的电路仿真。模型文件通常包括S参数(散射参数)、晶体管的转移特性、频率响应等信息。这些数据使设计师能够预测在不同工作条件下MRF8P9040N的性能,例如增益、输出功率、效率以及非线性效应等。 “RF_POWER模型”则可能是一个通用的功率放大器模型,适用于多种功率器件。它可能包含一系列参数,允许用户调整以适应不同的功率放大器类型或品牌。RF_POWER模型对于研究放大器的线性和非线性行为、功率增益、饱和现象、效率和热管理等问题非常有用。ADS软件内置的模型库提供了丰富的选择,但有时为了确保与实际器件的一致性,需要特定型号的模型文件,这就是这个资源包的价值所在。 “RF_POWER_ADS2017p1p9_DK.zip”文件很可能包含了更新或扩展的RF_POWER模型,适用于ADS 2017版的第1个至第9个补丁。这个版本的ADS可能包含了改进的仿真引擎、新的元器件模型或者对旧模型的优化,以提高仿真精度和速度。对于使用该版本软件的设计者来说,这个文件是必不可少的。 这个压缩包为使用ADS软件进行功率放大器设计的工程师提供了一套完整的解决方案,解决了模型与软件版本不兼容的问题。通过这两个模型,用户可以更准确地预测和分析功率放大器在真实系统中的表现,从而优化电路设计,减少实验迭代次数,降低开发成本。无论是学术研究还是工业应用,这个资源都具有很高的价值。
2024-09-10 14:47:44 2.23MB ads软件
1
紧接着《C++ zlib库源码编译及简单使用(VS2019)》后,我们使用minizip+zlib,对多级文件夹进行加密压缩成zip文件,然后对zip文件进行解压缩。 支持WinRAR、360zip等第三方工具解密解压。
2024-09-10 11:08:56 167KB zlib minizip
1
在本压缩包“基于matalb GPS相关读取跟踪和捕获.rar”中,我们可以深入探讨如何使用MATLAB这一强大的编程环境来实现GPS信号的读取、跟踪与捕获。MATLAB,全称Matrix Laboratory,是数学计算、数据分析以及算法开发的首选工具,尤其在信号处理领域有着广泛的应用。 GPS(全球定位系统)是一种利用卫星导航的全球定位技术,通过接收卫星发射的信号,可以计算出接收器的位置、速度和时间信息。在MATLAB中,处理GPS信号通常涉及以下关键知识点: 1. **数据获取**:GPS信号通常是通过天线接收,并由GPS接收机转化为数字信号。这些数据可能以二进制或NMEA(Navigation Message Exchange Format)文本格式存储。在MATLAB中,我们可以使用`textscan`或`fread`函数读取NMEA数据,解析出GPS的纬度、经度、高度、速度等信息。 2. **信号预处理**:原始GPS信号往往包含噪声,需要进行滤波处理。MATLAB提供了多种滤波器设计工具,如巴特沃兹滤波器、FIR滤波器和IIR滤波器,通过`fir1`、`iir1`等函数实现。 3. **载波相位捕获**:GPS信号包含载波和数据码两部分。载波相位捕获是恢复信号的关键步骤,通常采用快速傅里叶变换(FFT)和相关性分析。MATLAB的`fft`函数可以帮助我们完成这一过程。 4. **伪码同步**:GPS信号中的数据码,如Pseudo-Random Noise (PRN)序列,需要通过匹配滤波器与本地生成的码进行同步。MATLAB的`corrcoef`函数可用于计算相关性,实现伪码同步。 5. **多普勒频移校正**:由于接收机和卫星之间的相对运动,GPS信号会产生多普勒频移。利用MATLAB的频谱分析工具,如`spectrogram`,可检测并校正这一频率偏移。 6. **位置解算**:根据至少四颗卫星的信号,通过三边测量法(三角定位)计算接收机的精确位置。这涉及到线性代数运算,MATLAB的线性代数库如`linsolve`或`pinv`可以解决这个问题。 7. **动态跟踪**:为了保持对GPS信号的连续跟踪,需要实时更新载波相位和伪码同步。MATLAB的闭环控制系统设计,如PID控制器,可用于优化跟踪性能。 8. **可视化**:MATLAB的图形用户界面(GUI)和2D/3D绘图功能(如`plot`, `scatter`, `geoplot`等)可以用来展示GPS轨迹、卫星分布及信号质量等信息。 在提供的文件“30.GPS相关读取跟踪和捕获”中,很可能是包含了具体的MATLAB代码示例,涵盖了上述各个步骤。通过学习和理解这些代码,读者可以掌握如何在MATLAB环境中实现完整的GPS信号处理流程。在实际应用中,这有助于提升GPS信号处理的效率和精度,为定位、导航和时间同步等应用提供支持。
2024-09-10 08:56:47 28KB matlab GPS
1