基于python实现的BP神经网络手写数字识别模型实验源码+详细注释+数据集+项目说明+实验结果及总结.7z 人工智能 课程作业 手写数字数据集 BP网络模型识别手写数字 反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。反向传播要求有对每个输入值想得到的已知输出,来计算损失函数梯度。因此,它通常被认为是一种监督式学习方法。反向传播要求人工神经元(或“节点”)的激励函数可微。
BP神经网络算法的优化方法,mtlab代码实例。
2022-12-12 16:39:33 74KB bp神经网络
1
f(1)=2*x(1)^2-3*x(2)^2-4*x(1)+5*x(2)+x(3) 粒子群算法和遗传算法思想都很接近,都是一个通过对比去寻找最优解的过程,基于粒子群算法求最大最小值matlab代码,包含matlab源代码和报告,可直接运行出结果。 有一群鸟去寻找食物,其目的在于找到食物最多的地方,然后再大家一起去那里定居,但是每只鸟都会找到自己认为食物最多的地方,这个就叫做局部最优;为了防止陷入局部最优,所以大家定期会聚集在一起讨论,并进行食物量多少的比较,最终找到食物最多的地方,便是全局最优解。
2022-12-12 09:28:43 73KB matlab pso 报告 粒子群算法
1
使用C++类封装BP神经网络
1
擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真。
2022-12-10 11:27:45 548KB matlab
1
SVM、BP神经网络、随机森林matlab代码
2022-12-09 16:24:57 6.62MB 机器学习
1
介绍了模拟退火算法在背包问题中的应用步骤,以及程序实现方法。
2022-12-06 15:30:40 99KB 模拟退火算法
1
多目标粒子群算法的原理以及matlab代码实现,参考文献《基于改进多目标粒子群算法的配电网储能选址定容》。 代码注释清晰,结构有条理,非常适合用来学习多目标优化。 程序包括多目标粒子群算法的主函数与四个多目标优化常用的测试函数,代码运行有任何问题都可以帮忙解决,文档中提供了完整代码的获取方式。
2022-12-06 15:14:39 11KB 多目标优化 粒子群算法
1
MATLAB实现PSO-BP粒子群优化BP神经网络多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入12个特征,分四类。 运行环境MATLAB2018b及以上,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。
基于PSO-BP粒子群优化BP神经网络的数据分类预测(Matlab完整程序和数据) 基于PSO-BP粒子群优化BP神经网络的数据分类预测(Matlab完整程序和数据) 输入12个特征,分四类。