数据结构严蔚敏PPT,和书上一样哦!需要的赶紧下吧
2024-08-12 19:57:05 3.82MB
1
大数据技术体系详解:原理、架构与实践 大数据技术体系是指用于处理、存储和分析大数据的一系列技术和工具,包括数据科学、数据架构、数据存储、数据处理和数据分析等多个方面。 1. 数据科学的概念和大数据的关系 数据科学是以数据为基础,运用统计学、计算机科学等相关学科的方法和工具,对数据进行处理、分析、挖掘和利用,以揭示数据背后的规律和现象,为决策提供支持和指导的一门新兴学科。大数据则是指规模巨大、复杂多样、快速变化的数据集合,它包括结构化数据、半结构化数据和非结构化数据等多种类型。数据科学和大数据之间存在着密切的关系,数据科学为大数据的处理、分析和利用提供了科学的方法和理论指导,是大数据得以有效应用的重要支撑。 2. 大数据的定义和特征 大数据是指规模巨大、复杂多样、快速变化的数据集合,它具有以下四个特征: * 数据体量巨大:大数据通常包含大量的数据,这些数据可能来自于各种不同的来源和领域。 * 数据类型多样:大数据包含多种类型的数据,包括结构化数据、半结构化数据和非结构化数据等。 * 数据处理速度快:大数据需要快速处理和分析,以实时响应用户的需求。 * 数据价值密度低:尽管大数据具有很高的信息价值,但是其中很多数据并不直接有用,需要经过筛选、清洗、处理和分析后才能提炼出有价值的信息。 3. 大数据的来源和类型 大数据的来源非常广泛,主要可以分为以下几类: * 社交媒体数据:社交媒体平台如 Facebook 等产生了大量的用户生成内容,包括文本、图片、视频和音频等。 * 互联网数据:互联网上的网页、搜索查询、电子商务数据等都是大数据的重要来源。 * 移动数据:移动设备如智能手机、平板电脑等产生的位置信息、用户行为数据等也是大数据的重要来源。 * 物联网数据:物联网设备如智能家居、智能城市等产生的各种数据也是大数据的来源之一。 * 科学实验数据:科学实验产生的数据包括天文数据、基因组学数据、地球科学数据等。 * 企业数据:企业内部的业务数据、财务数据、客户数据等也是大数据的重要来源。 大数据可以分为结构化数据、半结构化数据和非结构化数据三种类型。结构化数据是指具有固定格式和有限字段的数据,如数据库中的数值型数据;半结构化数据是指具有一定结构但格式不固定的数据,如电子邮件文本;非结构化数据是指没有固定结构和格式的数据,如社交媒体文本、图片和视频等。 4. 大数据的处理流程 大数据的处理流程通常包括以下步骤: * 数据采集和存储:从各种来源采集到的原始数据需要进行合理的存储和管理,以便后续的处理和分析。 * 数据清洗和预处理:采集到的原始数据可能存在大量的噪声和异常值,需要进行清洗和预处理,以提高数据的质量和可靠性。 * 数据挖掘和分析:通过数据挖掘和分析技术,从大量的数据中发现隐藏的模式、关联关系和趋势等有价值的信息。 5. 大数据架构 大数据架构是指用于处理、管理和分析大数据的一系列技术和工具。在大数据架构中,最基础的部分是 Hadoop 和 HDFS。Hadoop 是一个分布式计算框架,它能够处理大规模的数据集,并将这些数据集分布到多个计算机节点上进行处理。HDFS 是 Hadoop 分布式文件系统,用于存储大数据集,能够在多个计算机节点之间进行数据备份和容错处理。 大数据架构还包括一些其他重要的组件,如 YARN、Hive、HBase 等。YARN 是 Hadoop 的资源管理器,用于管理集群中的计算资源。Hive 是一个数据仓库,能够将大数据集转换成容易使用的表格形式,方便进行分析和查询。HBase 是一个分布式数据库,能够存储非结构化和半结构化的数据。 大数据架构在智能客服和电商运营领域具有广泛的应用。在智能客服领域,大数据架构能够从海量的客户交互数据中提取出有用的信息,以帮助企业更好地了解客户需求,提高客户满意度。在电商运营领域,大数据架构能够对企业海量的销售数据进行分析,以帮助企业制定更加精准的营销策略,提高销售额和客户忠诚度。 6. 大数据存储与管理 大数据存储与管理是大数据架构中的重要组成部分,主要用于存储和管理大数据集。在分布式文件系统中,Hadoop HDFS 是最为常见的一种。Hadoop HDFS 是一个高度可扩展、容错性好的分布式文件系统,它能够在多个计算机节点之间进行数据备份和容错处理,保障数据的安全性和完整性。
2024-08-12 16:57:36 15KB
1
主要研究该产品行业的产能、产量、销量、销售额、价格及未来趋势。重点分析主要厂商产品特点、产品规格、价格、销量、销售收入及主要生产商的市场份额。历史数据为2018至2022年,预测数据为2023至2029年。 全球与中国玻璃通孔(TGV)衬底市场现状及未来发展趋势的研究主要集中在以下几个关键知识点上: 1. **市场规模与增长预测**:根据2024版的报告,全球玻璃通孔(Through Glass Via,简称TGV)衬底市场的规模预计在2029年将达到4.4亿美元,这表明市场具有显著的增长潜力。年复合增长率CAGR预计为24.5%,这样的高增长率预示着未来几年内TGV衬底技术在电子行业应用的强劲需求。 2. **市场增长驱动因素**:TGV衬底技术的主要驱动力可能来自于其在微电子封装、射频(RF)和微波组件、传感器以及高速信号传输领域的广泛应用。随着电子设备小型化、高速化和高性能化的需求增加,TGV技术因其优异的电性能和热稳定性而备受青睐。 3. **市场竞争格局**:2021年,全球TGV衬底市场由Corning、LPKF、Samtec、KISO WAVE Co., Ltd.等几大厂商主导,它们占据了约51.0%的市场份额。这表明市场集中度较高,但仍有新进入者和竞争者的空间,尤其是在技术创新和成本优化方面。 4. **主要厂商分析**: - **Corning**:作为全球知名的玻璃制造商,Corning可能凭借其在玻璃材料科学领域的深厚积累,在TGV衬底市场占据领先地位。 - **LPKF**:这家公司在激光加工技术方面有专业优势,可能在提供定制化解决方案和快速原型制作服务方面表现出色。 - **Samtec**:以其广泛的电子连接器解决方案而知名,Samtec可能在TGV衬底的集成和互连解决方案上具有竞争力。 - **KISO WAVE Co., Ltd.**:可能专注于特定的应用领域,如高频通信或高性能电子产品,以满足特定市场需求。 5. **地区分布**:虽然报告没有详细列出各地区的市场份额,但可以推测北美、欧洲和亚洲,特别是中国,是TGV衬底市场的主要消费地区,因为这些地区的电子制造业高度发达,对先进封装技术和材料的需求旺盛。 6. **行业报告价值**:此类行业研究和市场调研报告对于投资者、企业决策者以及产业链上下游参与者来说具有极高的参考价值,可以帮助他们了解市场趋势,制定战略规划,并在竞争激烈的市场环境中做出明智的商业决策。 总结来说,全球玻璃通孔(TGV)衬底市场正在经历快速发展,主要受到技术进步和市场需求的推动。关键参与者通过不断创新和扩大生产能力来抓住市场机遇,而未来的增长将依赖于对更高性能和更小尺寸电子产品的持续需求。
1
描述: 这个项目展示了如何将 MNIST160 手写数字图片数据集成功集成到 YOLOv8 图像分类框架中。通过此集成,项目成功地运用了 YOLOv8 的先进算法对手写数字进行快速、准确的识别和分类。MNIST160 数据集,包含160张高质量的手写数字图片,被优化并用于这个先进的图像分类任务,展示了 YOLOv8 在处理实际应用场景中的强大能力。 总结: 整合 MNIST160 数据集与 YOLOv8 的这个项目不仅展示了如何有效地运用最新的图像分类技术,也提供了一个实用的案例,用于探索和优化机器学习在实际应用中的潜能。
2024-08-12 10:16:45 13.21MB 数据集
1
《档案数字化工具——usSplit.exe详解》 在信息化飞速发展的今天,档案数字化已经成为各行各业不可或缺的重要环节。档案数字化能够高效地存储、检索和利用信息,提高工作效率,减少纸质文档的保管成本。其中,usSplit.exe是一款专为档案数字化设计的实用工具,其核心功能包括分件操作和成品数据验证,对于提升档案数字化的准确性和效率具有显著作用。 让我们深入了解usSplit.exe的分件功能。在档案数字化过程中,往往需要将大量图片或文件按照特定规则进行分类和整理,这就是所谓的“分件”。usSplit.exe能够根据用户提供的Excel表格数据,自动识别并划分文件,这大大减轻了人工操作的负担。用户只需要在Excel表中设定好文件的分类标准,如文件名、创建日期或者内容关键词等,工具就能智能地将相应的图片或文件归类到不同的文件夹中,实现快速、精准的分件操作。 usSplit.exe的成品数据验证功能同样至关重要。在档案数字化完成后,确保数据的完整性和准确性是关键。该工具可以对已经分件的文件进行数据校验,确保每一份文件与其在Excel表格中的记录相匹配。通过比对文件的元数据、内容或者其他预设的验证条件,usSplit.exe能够检测出可能存在的错误或遗漏,如文件缺失、文件内容错误等,从而及时进行修正,保证档案数字化的质量。 此外,usSplit.exe还采用了aardio编程语言进行开发,这是一种轻量级的、面向对象的编程语言,具备高效的执行能力和易用性。这使得usSplit.exe在保持强大功能的同时,也拥有良好的运行性能和较低的学习曲线。无论是专业技术人员还是普通用户,都能快速上手并灵活应用。 在实际应用中,usSplit.exe广泛应用于政府机关、企事业单位、图书馆、博物馆等各种需要档案管理的场景。它不仅能够有效地提高档案数字化的工作效率,还能降低错误率,确保档案数据的安全可靠。通过与Excel的完美结合,usSplit.exe提供了一种便捷、智能化的解决方案,让档案数字化变得更加高效和规范。 usSplit.exe作为一款专业的档案数字化工具,凭借其强大的分件和数据验证功能,为数字化工作提供了有力的支持。结合aardio语言的优秀特性,使得这款工具在复杂多样的档案管理需求中表现出色,成为了档案数字化领域的一款得力助手。
2024-08-12 03:29:55 865KB 档案数字化 aardio
1
kis旗舰版数据库表结构之采购管理,xls 格式,表名对应表述,每张表字段名、类型、描述等各种资料齐全。
2024-08-11 15:16:20 64KB kis旗舰版 数据库表结构
1
1、YOLO树叶分类目标检测数据集,真实场景的高质量图片数据,数据场景丰富。使用lableimg标注软件标注,标注框质量高,含voc(xml)、coco(json)和yolo(txt)三种格式标签,分别存放在不同文件夹下,可以直接用于YOLO系列的目标检测。 2、附赠YOLO环境搭建、训练案例教程和数据集划分脚本,可以根据需求自行划分训练集、验证集、测试集。 3、数据集详情展示和更多数据集下载:https://blog.csdn.net/m0_64879847/article/details/132301975
2024-08-11 13:59:56 27.93MB 目标检测 数据集 课程资源
1
在本资源包中,我们聚焦于使用MATLAB这一强大的编程环境来实现统计学习、机器学习、神经网络以及深度学习的相关算法和技术。MATLAB是工程和科学领域常用的工具,尤其在数据分析和模型构建方面表现出色。以下将详细阐述这些领域的基础知识及其在MATLAB中的应用。 一、统计学习 统计学习是数据挖掘和机器学习的基础,它涵盖了各种方法,如线性回归、逻辑回归、决策树等。在MATLAB中,可以使用内置函数如`regress`进行线性回归分析,`logistic`进行逻辑回归,或者`fitrtree`构建决策树。此外,`fitensemble`函数可以用来创建集成学习模型,如随机森林或梯度提升机。 二、机器学习 机器学习是让计算机通过数据自我学习和改进的方法。MATLAB提供了丰富的机器学习工具箱,包括支持向量机(SVM)、K近邻(KNN)、朴素贝叶斯(Naive Bayes)等。例如,`svmtrain`和`svmpredict`用于SVM分类与预测,`knnsearch`实现KNN算法,`nbclassify`则服务于朴素贝叶斯分类。 三、神经网络 神经网络是模拟人脑神经元结构的计算模型,广泛应用于图像识别、自然语言处理等领域。MATLAB的神经网络工具箱提供了构建和训练各种神经网络的能力,如前馈网络、循环网络和卷积网络。`feedforwardnet`用于创建前馈网络,`train`函数用于训练,`sim`进行网络预测。此外,深度学习工具箱支持更复杂的网络结构,如`alexnet`、`vgg16`等预训练模型。 四、深度学习 深度学习是机器学习的一个分支,通过多层非线性变换对复杂数据进行建模。MATLAB的深度学习工具箱提供了一系列的深度学习模型,如卷积神经网络(CNN)、递归神经网络(RNN)、长短期记忆网络(LSTM)等。例如,`convn`函数执行卷积操作,`lstmLayer`创建LSTM层,`trainNetwork`用于训练整个网络模型。 在资源包中,包含的源代码和数据资料将帮助用户更深入地理解并实践上述概念。通过实际操作,用户可以学习如何在MATLAB中设计、训练和优化模型,同时获取对各种算法性能的直观认识。这些实例代码不仅适用于初学者,也对有一定基础的研究人员提供了宝贵的参考资料,便于他们快速实现自己的算法并验证结果。 这个资源包是学习和研究MATLAB在统计学习、机器学习、神经网络和深度学习领域应用的理想材料,可以帮助用户提升技能,解决实际问题,并为学术研究或项目开发打下坚实基础。
2024-08-10 20:44:24 106KB matlab 机器学习 神经网络 深度学习
1
机器学习基础:数学理论+算法模型+数据处理+应用实践 机器学习,作为人工智能领域的重要分支,正在逐渐改变我们生活和工作的方式。要想深入理解和有效应用机器学习技术,必须扎实掌握其基础知识。这其中,数学理论、算法模型、数据处理和应用实践是四大不可或缺的要素。 数学理论是机器学习的基石。统计概率、线性代数、微积分和优化理论等数学知识,为机器学习提供了严密的逻辑基础和数学工具。掌握这些理论知识,可以帮助我们更好地理解机器学习算法的原理和运行机制,从而更有效地应用它们解决实际问题。 算法模型是机器学习的核心。分类算法、聚类算法、回归算法和降维算法等,都是机器学习中常用的算法模型。精通这些算法的原理和应用场景,可以帮助我们根据具体问题的特点选择合适的算法,从而构建出高效、准确的机器学习模型。 数据处理是机器学习的重要环节。在机器学习项目中,数据的质量和预处理方式往往对模型的性能产生重要影响。因此,我们需要掌握特征提取、数据清洗、数据变换和特征选择等数据处理技术,以提高数据的质量和模型的性能。 应用实践是检验机器学习基础知识和技能的试金石。通过参与实际项目,我们可以将理论知识与实际应用相结 ### 机器学习基础知识点详解 #### 一、数学理论 **1.1 统计概率** - **定义**: 统计概率是研究随机事件发生可能性的一门学科。 - **重要性**: 在机器学习中,统计概率帮助我们理解数据分布、模型参数的概率意义,以及如何从样本数据中估计这些参数。 - **应用**: 最大似然估计、贝叶斯估计等。 **1.2 线性代数** - **定义**: 研究向量空间和线性映射的数学分支。 - **重要性**: 用于表示和操作多维数据结构,如矩阵运算、特征值和特征向量等。 - **应用**: 数据集的表示、线性变换、特征分解等。 **1.3 微积分** - **定义**: 研究连续变化的数学分支,包括微分和积分两大部分。 - **重要性**: 微积分是优化算法的基础,帮助我们找到函数的最大值或最小值。 - **应用**: 梯度下降算法、最优化问题求解等。 **1.4 优化理论** - **定义**: 研究如何寻找函数的极值。 - **重要性**: 在机器学习中,优化理论用于调整模型参数,以最小化误差函数或最大化目标函数。 - **应用**: 梯度下降、牛顿法、拟牛顿法等。 #### 二、算法模型 **2.1 分类算法** - **定义**: 将输入数据分配到特定类别的算法。 - **例子**: 逻辑回归、决策树、支持向量机等。 - **评估**: 精确率、召回率、F1分数等指标。 **2.2 聚类算法** - **定义**: 将相似的数据对象分组在一起的方法。 - **例子**: K-Means、层次聚类、DBSCAN等。 - **评估**: 轮廓系数、Calinski-Harabasz指数等。 **2.3 回归算法** - **定义**: 预测连续值输出的算法。 - **例子**: 线性回归、岭回归、Lasso回归等。 - **评估**: 均方误差、R²分数等。 **2.4 降维算法** - **定义**: 减少数据特征数量的技术。 - **例子**: 主成分分析(PCA)、线性判别分析(LDA)等。 - **评估**: 重构误差、解释方差比等。 #### 三、数据处理 **3.1 特征提取** - **定义**: 从原始数据中提取有意义的信息。 - **例子**: 文本中的词频-逆文档频率(TF-IDF)、图像中的边缘检测等。 - **重要性**: 提高模型的预测性能。 **3.2 数据清洗** - **定义**: 清除数据中的噪声、不一致性和缺失值。 - **例子**: 使用均值、中位数填充缺失值,异常值检测等。 - **重要性**: 确保数据质量,减少模型训练时的偏差。 **3.3 数据变换** - **定义**: 转换数据格式,使其符合算法要求。 - **例子**: 归一化、标准化等。 - **重要性**: 加速模型收敛,提高预测准确性。 **3.4 特征选择** - **定义**: 从大量特征中挑选出对目标变量贡献最大的特征子集。 - **例子**: 递归特征消除(RFE)、基于模型的选择等。 - **重要性**: 减少模型复杂度,防止过拟合。 #### 四、应用实践 **4.1 实际项目** - **定义**: 将理论知识应用于解决实际问题的过程。 - **例子**: 推荐系统、图像识别、自然语言处理等。 - **重要性**: 验证理论的有效性,积累实践经验。 **4.2 模型评估** - **定义**: 测量模型性能的过程。 - **例子**: 交叉验证、混淆矩阵、ROC曲线等。 - **重要性**: 选择最佳模型,改进模型性能。 **4.3 过拟合与欠拟合** - **定义**: 模型过于复杂或简单导致的问题。 - **解决方案**: 正则化、增加数据量、特征选择等。 - **重要性**: 平衡模型复杂度与泛化能力。 **4.4 模型调参** - **定义**: 调整模型参数以获得更好的性能。 - **例子**: 网格搜索、随机搜索等。 - **重要性**: 提升模型效果,实现最佳配置。 通过以上对机器学习基础知识的详细介绍,我们可以看出,机器学习不仅仅是一系列算法的应用,更是建立在深厚数学理论基础上的科学。掌握这些理论知识和技术,能够让我们更加深刻地理解机器学习的工作原理,并在实践中取得更好的成果。
2024-08-10 19:39:52 8.96MB 机器学习 聚类
1
《船说:算法与数据结构》是B站上由胡船长主讲的一门课程,致力于帮助大学生深入理解和掌握C/C++/JAVA/Python等编程语言中的数据结构知识。这门课程不仅涵盖了基础的数据结构类型,如数组、链表、栈、队列,还深入探讨了树形结构、图论、哈希表以及排序和查找算法等核心主题。通过学习这些内容,学生可以提升编程能力,为解决复杂问题打下坚实基础。 在提供的压缩包文件"胡船长,B 站《船说:算法与数据结构》课程讲义和代码.zip"中,我们可以找到一系列的学习资源,包括讲义和实际的代码示例。这些资料对于初学者和进阶者都非常有价值,因为理论与实践的结合是理解数据结构的关键。 让我们来详细了解一下数据结构这个概念。数据结构是计算机科学中一个重要的基础学科,它研究如何在计算机中组织和存储数据,以便高效地进行访问和修改。数据结构的选择直接影响到程序的效率和设计。常见的数据结构有以下几种: 1. **数组**:最基础的数据结构,它是一个元素类型相同的集合,可以通过索引快速访问任一元素。但是插入和删除操作通常比较低效。 2. **链表**:每个节点包含数据和指向下一个节点的引用,适合频繁的插入和删除操作。根据链表的指向,可分为单向链表和双向链表。 3. **栈**:遵循“后进先出”(LIFO)原则的数据结构,常用于表达式求值、递归调用等场景。 4. **队列**:遵循“先进先出”(FIFO)原则,常用于任务调度、消息传递等场景。 5. **树**:一种非线性的数据结构,每个节点可有零个或多个子节点,如二叉树、平衡树(AVL树、红黑树)等,广泛应用于搜索和排序问题。 6. **图**:由节点(顶点)和边组成,表示对象间的关系,可用于网络路由、社交网络分析等问题。 7. **哈希表**:通过哈希函数将数据映射到固定大小的桶中,实现快速查找、插入和删除,但可能产生冲突问题。 8. **堆**:一种特殊的树形数据结构,满足堆性质(最大堆或最小堆),常用于优先队列和优化算法(如堆排序)。 9. **排序算法**:如冒泡排序、选择排序、插入排序、快速排序、归并排序等,用于对数据进行升序或降序排列。 10. **查找算法**:如线性查找、二分查找、哈希查找等,用于在数据中寻找特定元素。 学习这些数据结构的同时,配合实际的代码示例尤为重要。胡船长的课程讲义和代码将帮助学生深入理解每种数据结构的实现细节和应用场景。通过阅读和运行代码,学生可以亲手实践,增强对数据结构的理解,并能提高编程技能。 《船长的算法与数据结构》课程提供了丰富的学习资源,不仅包括理论知识,还有实践案例。对于想要提升编程能力和算法水平的学子来说,这是一个不可多得的宝藏。利用这些资源,相信你将在数据结构的世界里游刃有余,为未来的技术之路铺就坚实的基石。
2024-08-10 10:12:06 108.48MB 数据结构
1