给大家分享一套课程——MMLAB实战系列,完整版视频课程下载,附源码。 OpenMMLab 是一个适用于学术研究和工业应用的开源项目,涵盖了计算机视觉的许多研究课题,如:图像分类、目标检测、目标分割、超分辨率图像生成等。是最大最全的开源视觉代码库合集!深度学习时代最完整的计算机视觉开源算法体系!
2022-08-31 17:05:20 513B 深度学习 计算机视觉 图像分类
1
用pytorch自带模型实现图像分类
2022-08-17 09:06:17 450.37MB python pytorch cuda
1
vgg16利用相似性损失函数预训练模型(cpu)
2022-08-10 17:05:58 449.25MB 深度学习
1
人工智能:深度学习从入门到精通(25周全,图像分类+图像分割+目标检测+人脸识别+模型分析)
1
人工智能:深度学习从入门到精通视频教程2022新课,25周全,提供源码和文档下载
1
tensorflow2.3-keras使用卷积神经网络CNN实现cifar10图像分类源码+数据集+注释+模型加载保存
2022-07-29 17:05:54 317.84MB keras tensorflow 深度学习 卷积神经网络
1
基于tensorflow和keras的cifar10图像分类源码,5星级源码
2022-07-29 17:05:50 8KB tensorflow cnn 深度学习
1
微生物图像分类器 微生物图像分类的数据集和神经网络的集合。 贡献者: Sari Sabban-Tarik Alafif-Abdullah Alotebi 描述: 这是数据集和神经网络的集合,用于从显微镜图像中检测或分类微生物。 这里提供了所有必需的脚本,数据集和权重。 到目前为止,该项目可以检测或分类以下生物: Protists-17个属: 硬皮-胞囊菌-Lepocinclis-微囊虫-草履虫-idi草-松树皮-胸膜肺炎-扁桃体-沃尔沃-Ceratium-Coleps-Collodictyon-Didinium-Dinobryon-Frontonia-Phacus 变形虫: 只需检测通用细胞,即可区分其生命周期的活跃阶段和非活跃阶段。 线虫: 根据营养级别(CNN)对线虫进行分类,或者检测通用线虫(对象检测),或者逐像素检测线虫(语义分割)以进行生物量计算 可用的数据集和训
2022-07-29 10:52:20 123KB neural-network keras cnn dataset
1
该数据集是将从官网下载的MNIST数据集转换成了.png格式的图片之后的数据。新手通过本地使用该数据集训练模型可以更好的了解图像分类任务的完整的流程,有助于扩展到别的分类任务。
2022-07-29 09:07:56 29.64MB mnist 手写数字 图像分类 数据集
1
核稀疏表示分类(KSRC)是稀疏表示分类的非线性扩展,显示了其在高光谱图像分类中的良好性能。 但是,KSRC仅考虑无序像素的光谱,而没有在空间相邻数据上合并信息。 本文提出了一种对空间光谱核稀疏表示的相邻滤波核,以增强对高光谱图像的分类。 这项工作的新颖性在于:1)提出了空间光谱KSRC框架; 2)通过核特征空间中的邻域滤波来测量空间相似度。 在几个高光谱图像上的实验证明了该方法的有效性,并且所提出的相邻滤波内核优于现有的空间光谱内核。 此外,所提出的空间光谱KSRC为将来的发展打开了广阔的领域,在其中可以轻松地合并滤波方法。
2022-07-28 10:42:19 1.12MB Classification; kernel sparse representation;
1