西门子博途PLC1200/1500在MODBUS通讯中实现多从站轮询的方法和技术细节。首先强调了主程序架构的设计,尤其是轮询状态机的构建,确保各个从站按序被访问。接着讲解了MB_MASTER配置的关键参数设置,如主站地址、端口号、数据指针等,并指出常见的配置陷阱。然后深入探讨了轮询切换的具体实现方法,推荐使用状态机来稳定地管理多个从站的数据处理。此外,还提供了超时处理机制,以应对通讯异常情况,确保系统的可靠性。最后分享了一些实用的数据转换技巧以及对轮询频率的合理设定。 适合人群:从事工业自动化领域的工程师,尤其是熟悉西门子PLC和MODBUS协议的技术人员。 使用场景及目标:帮助工程师们掌握如何在西门子博途平台上高效、可靠地实现多从站轮询通讯,解决实际应用中的常见问题,提高系统稳定性。 其他说明:文中不仅提供了详细的代码示例,还结合了作者的实际经验,给出了许多宝贵的建议和注意事项,有助于读者更好地理解和应用相关技术。
2025-10-10 09:53:29 751KB
1
粒子群优化算法(Particle Swarm Optimization, PSO)是由Kennedy和Eberhart于1995年提出的一种基于群体智能的优化技术。其灵感来源于对鸟群捕食行为的观察和模拟,通过模拟鸟群的社会协作来达到寻找食物最优策略的目的。粒子群优化算法特别适合于解决复杂非线性、多峰值的优化问题。 在粒子群优化算法中,每个粒子都代表解空间中的一个潜在解,而整个粒子群则是在多维空间中搜索最优解的群体。每个粒子根据自己的飞行经验(即个体认知)和群体的最佳经验(即社会行为)来动态调整自己的飞行速度和方向。粒子群优化算法的关键在于信息的社会共享,每个粒子都能记住自己曾经达到的最佳位置,即个体最佳(pbest),以及整个群体所经历的最佳位置,即全局最佳(gbest)。 PSO算法的基本步骤包括初始化粒子群体、评价每个粒子的适应度、找到个体最佳位置(pbest)以及更新全局最佳位置(gbest)。粒子的位置和速度会根据一系列公式进行更新,速度更新公式通常包含三部分:粒子先前的速度、认知部分(个体经验)和社交部分(群体经验)。其中,惯性权重、加速度常数以及随机函数等参数对于算法性能的调节起着至关重要的作用。 粒子群优化算法的优点在于其简单易行、收敛速度快,并且设置参数少,这使得它成为现代优化方法领域研究的热点之一。由于其具有较快的收敛速度和较少的参数设置,粒子群优化算法被广泛应用于工程优化、神经网络训练、机器学习以及函数优化等众多领域。 粒子群优化算法在实际应用时,需要根据具体问题设置合适的适应度函数(fitness function),用来评价每个粒子的性能,并依据性能来指导粒子更新自己的位置和速度。算法中的关键参数,如惯性权重(w)、加速度常数(c1和c2)以及速度和位置的变化范围等,需要经过仔细调整以达到最佳的优化效果。此外,算法的迭代次数也需要根据具体问题来确定。 粒子群优化算法通过模拟自然界的群体行为,提供了一种高效、易实现的全局优化策略。它以简单的算法结构、较快速的收敛速度以及良好的优化性能,在各种优化问题中获得了广泛的应用,成为了当今优化方法研究的重要分支。
2025-10-10 08:52:23 3.73MB
1
粒子群优化算法(PSO)是一种智能优化技术,其灵感来源于自然界中生物群体的集体行为,如鸟群、鱼群等的觅食行为。PSO算法模仿鸟群寻找食物的过程,其中每只鸟被抽象为一个“粒子”,在解空间内按照一定的速度移动,并根据自身经验和群体经验来调整移动速度和方向,以寻找最优解。 PSO算法的基本思想包括“社会学习”和“个体学习”两个方面。个体学习是指粒子根据自己的飞行经验调整速度,而社会学习则是指粒子根据群体中其他粒子的飞行经验调整自己的速度。每个粒子在搜索过程中都会记录下自己经历过的最佳位置(pbest),而所有粒子中经历过的最佳位置则被记录为全局最佳位置(gbest)。粒子的位置和速度会根据这些信息不断更新,直至找到问题的最优解。 粒子群优化算法的数学描述包括粒子的位置和速度的更新公式。粒子位置的更新依赖于它的当前速度、个体最优位置以及群体最优位置。其中,更新公式包含三个主要部分:粒子先前的速度、粒子与自身最佳位置之间的差距(认知部分)以及粒子与群体最佳位置之间的差距(社会部分)。算法中的参数,如加速度常数c1和c2、惯性权重w以及随机函数r1和r2,用于调整粒子的搜索步长和随机性。 粒子群优化算法的特点包括收敛速度快、参数设置简单等。由于其简单易行和高效的寻优能力,PSO已成为优化问题研究的热点。在实际应用中,PSO算法不仅适用于连续优化问题,还可以通过适当的调整应用于离散优化问题。 发展历程方面,PSO算法最初由Kennedy和Eberhart于1995年提出,经过不断地研究和发展,已成为一种广泛使用的优化算法。与其他智能算法如遗传算法(GA)、人工神经网络(ANN)和模拟退火算法(SA)相比,PSO算法的优势在于其简单易懂、设置参数少,但也有其局限性,比如对于某些特定类型的优化问题,可能需要更多的调整和优化才能达到理想的寻优效果。 粒子群优化算法是通过模拟自然界中生物群体的行为,结合个体和群体的经验,动态调整粒子位置和速度,以达到问题求解的目的。其易于实现、参数简单和收敛速度快的特点,使其在工程优化、数据分析和其他需要解决优化问题的领域有着广泛的应用前景。
2025-10-10 08:51:47 2.16MB
1
JSP的标准测试数据集,包含40个算例(la01~40)。数据来源:S. Lawrence. "Resource constrained project scheduling: an experimental investigation of heuristic scheduling techniques (Supplement).", Graduate School of Industrial Administration. Pittsburgh, Pennsylvania, Carnegie-Mellon University, 1984.
2025-10-09 22:29:30 20KB 数据集 作业车间调度 运筹优化
1
内容概要:本文介绍了利用粒子群优化算法(PSO)设计宽带消色差超透镜的方法,并详细阐述了从确定初始参数到最终优化结果的完整流程。文中强调了PSO算法在寻找最佳透镜参数组合方面的作用,确保超透镜拥有高透光率、宽频带和消色差特性。此外,还展示了如何用MATLAB编写核心程序,并借助FDTD(时域有限差分法)进行仿真分析,以验证设计方案的有效性和可行性。 适合人群:从事光学器件设计的研究人员和技术人员,尤其是对超透镜技术和智能优化算法感兴趣的学者。 使用场景及目标:适用于需要高效设计高性能超透镜的科研项目,旨在提高超透镜的光学性能,拓展其应用范围,特别是在光通信、光信息处理和生物医学等领域。 其他说明:文章不仅提供了理论指导,还包括具体的编程实现步骤,有助于读者深入理解和实际操作。
2025-10-09 09:28:36 511KB
1
如何利用MATLAB和YALMIP求解器构建火电机组深度调峰模型。首先定义了以降低发电成本为目标函数,接着引入了直流潮流、功率平衡、爬坡速率等约束条件来确保模型符合实际运行情况。文中还探讨了求解设置如选择合适的求解器(CPLEX或GUROBI)、配置多线程计算提高求解速度的方法,并强调了针对不同深度调峰需求调整机组出力下限的重要性。此外,作者提供了将模型封装为函数以便于复用以及进行可视化验证的具体步骤。 适合人群:从事电力系统优化的研究人员和技术人员,尤其是对火电机组调峰感兴趣的从业者。 使用场景及目标:适用于需要解决电网负荷波动带来的挑战,特别是在高峰低谷期调节发电量的应用场合。通过本模型可以帮助电力公司制定更加经济有效的发电计划,在保障供电稳定的同时减少运营成本。 其他说明:文中提到的所有代码片段均经过精心设计,可以直接用于IEEE30和39节点系统的仿真测试。对于更大规模的电力网络,只需适当修改输入数据即可扩展使用。
2025-10-08 20:53:37 409KB
1
工业大模型是在新一代人工智能技术与工业场景深度融合的基础上诞生的,它正以飞速发展的方式重构制造业智能化体系,成为工业智能化变革的关键力量。工业大模型技术体系主要包含卓越的数据处理能力、跨模态融合特性和智能决策效能三大关键要素。尽管工业大模型的发展初见成效,但仍存在技术挑战,如工业数据多模态复杂性、模型可解释性不足和应用成本较高等问题。为了克服这些挑战,行业急需系统性的解决方案来推进工业大模型的有效落地和广泛应用。 《2025工业大模型白皮书》由北京航空航天大学自动化科学与电气工程学院蔡茂林教授担任总策划和主编,内容涵盖了工业大模型与通用大模型的不同、技术体系及关键技术、工业大模型赋能的重点领域和主要场景、以及国内外工业大模型产业生态的现状和未来发展趋势。本书通过多维度的探讨,为读者提供了工业大模型的深入剖析,并给出了工业大模型标准化、生态化的发展路径。此外,本书还详尽介绍了工业大模型应用开发的实施路径,为行业的发展注入了新的动力。 工业大模型的核心术语涵盖了工业大模型本身、工业任务/行业模型适配、工业数据制备、工业基座模型训练和工业场景交互应用等多个方面。其中,工业大模型是基础和核心,而其他术语则分别关注模型在不同工业环节的应用和适配。工业大模型的特点包括数据维度、模型架构和应用范式等多方面,每一方面都有其独特的技术难点和挑战。 在技术和应用层面,工业大模型具备高度的数据处理能力和跨模态融合能力。其数据维度广泛,涵盖了结构化数据、半结构化数据和非结构化数据等多种类型,且模型能够处理来自不同工业环节的多样化数据源。模型架构设计上,工业大模型通常具有较高的复杂性,需要高效算法和足够的计算资源来支撑其运行。在应用范式方面,工业大模型强调与实际工业场景的紧密对接和交互,以实现智能化决策和操作。 工业大模型的分类体系则基于不同的行业需求和技术要求进行划分。例如,在高端装备和智能制造等领域,工业大模型可以实现对设备状态的精确监控、故障预测和维护优化等功能。这些应用不仅提升了生产效率和产品质量,还降低了能耗和成本,有助于推动工业向更加高效和绿色的方向发展。 书中还特别强调了工业大模型的标准化和生态化发展路径,这对于推动整个行业的技术进步和生态构建至关重要。标准化有助于统一技术规格和操作流程,而生态化则促进了不同参与者之间的合作和协同创新。随着对工业大模型技术的深入研究和广泛应用,未来制造业将进入一个更高效率、更绿色的新时代。 《2025工业大模型白皮书》为高等学校新工科及人工智能相关教学提供了有力支持,并对全球制造业的未来发展提供了宝贵的智慧与力量。通过持续的探索和创新,工业大模型有望成为推动工业智能化和数字化转型的关键技术,进一步加快工业4.0的实现进程。
2025-10-07 09:56:06 11.81MB 智能制造 数据处理 模型优化 边缘计算
1
anaconda安装开源硬件_磁轴键盘_霍尔传感器_按键触发深度检测_自定义键值映射_两层预设切换_游戏办公两用_osu专用优化_防误触设计_屏幕保护功能_灯光控制_输入法切换_随机选歌撤销_机械轴.zip 开源硬件作为一种开放源代码的硬件,近年来受到硬件爱好者和开发者的广泛关注。它使得用户可以自由地研究、修改和分享硬件的设计。磁轴键盘作为开源硬件的一部分,它通过使用霍尔传感器来检测按键触发的深度,并允许用户自定义键值映射,从而为用户提供了更为灵活的交互方式。这种键盘不仅适合日常办公使用,还特别优化了游戏体验,如专为流行音乐游戏osu!进行定制。在游戏模式下,磁轴键盘的设计考虑了防误触功能,减少了在快速操作时的误触现象。 此外,磁轴键盘还具备了两层预设切换的功能,用户可以根据不同的使用场合,如切换到游戏或办公模式,快速地调用不同的按键配置。为了保护显示器,键盘还加入了屏幕保护功能,当长时间不操作时可以自动启动屏幕保护程序。灯光控制功能则增强了键盘的观赏性和使用体验,用户可以根据自己的喜好调整键盘的灯光效果。 输入法切换功能考虑到了多语言用户的需求,使得用户在不同输入法之间切换更为便捷。随机选歌撤销功能则是音乐爱好者的福音,它允许用户在游戏中或是听歌时随机选择歌曲,同时提供了撤销上一首歌的功能。机械轴作为键盘的核心部件,其质量和手感直接关系到用户体验,磁轴键盘的机械轴设计无疑为用户提供了一种高质量的按键反馈。 在软件方面,附赠资源.docx和说明文件.txt为用户提供了详细的产品安装和使用说明,帮助用户更好地了解产品的特性和功能。Micrometer-M07-main可能是一个软件项目的名称,虽然具体的项目内容没有在这次提供的文件中明示,但可以推测它可能与磁轴键盘的软件控制或驱动程序有关,对于想要深入了解或进行二次开发的用户来说是一个宝贵的资源。 这款开源硬件磁轴键盘以其独特的设计和多样化的功能,为游戏爱好者和办公人群提供了一个高性能、可定制、多功能的输入设备。它的设计充分考虑了用户的实际需求,从防误触到灯光控制,再到游戏优化,每一个细节都显示出开发团队对产品的用心和对用户体验的重视。
2025-10-06 23:47:42 32KB python
1
贝叶斯优化是一种全局优化算法,主要用于处理目标函数没有闭式解或者梯度信息难以获得的优化问题。它利用贝叶斯推理对目标函数的性质进行建模,并依据此模型来指导搜索过程,选择下一个最有希望的点进行评估。贝叶斯优化通过迭代地选择和评估样本点来更新目标函数的后验分布,然后使用这一后验分布来决定未来搜索的方向。 在深度学习领域,贝叶斯优化被广泛应用在模型参数调优、网络结构搜索、超参数优化等任务中。由于深度学习模型通常含有大量的超参数,手动调整这些参数的过程不仅耗时而且效率低下。贝叶斯优化能够有效地指导这一过程,通过构建一个代理模型来近似目标函数,并利用获得的样本点来不断更新这一代理模型,最终找到最佳的超参数配置。 在“DeepLearning-贝叶斯优化”的主题下,可能会涉及以下几个方面的知识点: 1. 贝叶斯推理基础:要理解贝叶斯优化背后的贝叶斯推理原理。贝叶斯推理是一种统计方法,它提供了一种在给定先验知识和新数据的情况下,更新对某个事件或参数的信念的方法。在这个过程中,先验知识被更新为后验知识,反映新证据的影响。 2. 目标函数建模:在贝叶斯优化中,目标函数通常被建模为高斯过程(Gaussian Process, GP)。高斯过程是一种在有限点集上定义的分布族,用于对目标函数的不确定性进行建模。其核心优势在于能够给出预测值的不确定度估计,从而帮助算法做出探索(exploration)与利用(exploitation)之间的权衡。 3. 采集函数(Acquisition Function):采集函数用于确定在每一步中应当评估哪些点。常用的采集函数包括期望改进(Expected Improvement, EI)、上置信界(Upper Confidence Bound, UCB)和概率改进(Probability of Improvement, PI)。它们在不同方式上平衡了对新区域的探索和对已知好区域的利用。 4. 超参数优化:在深度学习中,贝叶斯优化常用于超参数优化。超参数是在模型训练之前设置的参数,它们决定了学习过程和网络结构。这些超参数包括但不限于学习率、批处理大小、层数、隐藏单元数等。贝叶斯优化能够为这些超参数的设置提供一种系统的调优方法。 5. 深度学习模型中的应用:贝叶斯优化不仅用于超参数的优化,也可以用于模型结构的搜索,例如神经网络架构搜索(Neural Architecture Search, NAS)。此外,在深度学习中,贝叶斯优化还可以用来解决诸如模型正则化、学习策略选择等问题。 6. 实践方法论:考虑到文件列表中包含“11 实践方法论.pdf”,这可能意味着文档中包含有关如何实际应用贝叶斯优化的指导,例如具体实现的步骤、调试方法和性能评估。 7. 数学基础:在讨论深度学习的贝叶斯优化时,相关文件中可能还会涉及到一些数学基础,如线性代数、概率论和统计学等,这些都是理解和应用贝叶斯优化所必需的数学工具。 8. 相关技术参考:文档列表中提到的“DL中文.pdf”和“DL英文.pdf”表明该文档可能包含有关深度学习的更广泛讨论,而“5 机器学习基础.pdf”和“2 线性代数.pdf”则可能为贝叶斯优化提供了理论基础和前置知识。 从给定的文件信息中可以整理出关于贝叶斯优化及其在深度学习中应用的丰富知识点,这包括贝叶斯推理原理、高斯过程、采集函数、超参数优化、深度学习模型应用以及必要的数学基础等。
2025-10-05 19:29:37 37.2MB 贝叶斯
1
"基于HFSS的NFC线圈设计:13.56MHz RFID天线与匹配电路的参数化建模、性能分析及优化策略",NFC线圈设计#HFSS分析设计13.56MHz RFID天线及其匹配电路 ①在HFSS中创建参数化的线圈天线模型...... ②使用HFSS分析查看天线在13.56GHz工作频率上的等效电感值、等生电容值、损耗电阻值和并联谐振电阻值...... ③分析走线宽度、线距、走线长度、PCB厚度对天线等效电感值的影响...... ④并联匹配电路 串联匹配电路的设计和仿真分析..... ,NFC线圈设计; HFSS分析设计; 13.56MHz RFID天线; 参数化线圈天线模型; 等效电感值; 等效电容值; 损耗电阻值; 并联谐振电阻值; 走线宽度; 线距; 走线长度; PCB厚度影响; 匹配电路设计; 匹配电路仿真分析。,基于HFSS的13.56MHz NFC/RFID天线及其匹配电路设计与分析
2025-10-03 14:08:18 355KB istio
1