由于上传资源大小限制,本资源包括GTSRB德国交通标志训练集,非常适合初次接触深度学习交通识别领域的人进行学习使用。
2021-04-25 23:06:20 263.5MB GTSRB 测试集
1
网上很多复旦大学的文本分类数据集,但是训练和测试大多是分开的。 我收集下载重新打包,以方便大家使用。 仅需5个积分,是最便宜的了。
2021-04-17 12:37:02 103.86MB 文本分类 数据集 复旦大学
1
LFW人脸数据库的简介 LFW (Labled Faces in the Wild)人脸数据集:是目前人脸识别的常用测试集,其中提供的人脸图片均来源于生活中的自然场景,因此识别难度会增大,尤其由于多姿态、光照、表情、年龄、遮挡等因素影响导致即使同一人的照片差别也很大。并且有些照片中可能不止一个人脸出现,对这些多人脸图像仅选择中心坐标的人脸作为目标,其他区域的视为背景干扰。LFW数据集共有13233张人脸图像,每张图像均给出对应的人名,共有5749人,且绝大部分人仅有一张图片。每张图片的尺寸为250X250,绝大部分为彩色图像,但也存在少许黑白人脸图片。
2021-04-16 22:03:36 180.77MB lfw人脸数据集 人脸识别数据集
1
今天小编就为大家分享一篇Python 实现训练集、测试集随机划分,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2021-04-16 14:53:48 37KB Python 训练集 测试集 划分
1
数据集包括文字的和图片的数据集
2021-04-12 19:05:07 8.76MB OCR
使用TensorFlow进行卷积神经网络实现花卉分类的项目,加载十种花分类,建立模型后进行预测分类图片 环境:win10 +TensorFlow gpu 1.12.0+pycharm 训练集 训练数据存放路径为:‘flower/train/花文件名/*.jpg’ 训练模型存储路径为:'flower/model/‘ 测试样本路径及文件名为:'flower/test/花文件名/**.jpg‘ 文章:https://blog.csdn.net/qq_33290233/article/details/107035583#comments_15506322
2021-04-09 21:02:34 298.00MB tensorflow CNN卷积
1
BP神经网络算法(鸢尾花)附带相关训练集及测试集,Iris(鸢尾花)数据集分为训练集(Iris-train.txt)和测试集(Iris-test.txt),分别含75个样本,每个集合中每种花各有25个样本。
2021-04-06 20:40:32 2KB BP网络鸢尾花
1
Words-240测试集包含240对中文词汇和人工对这些词对之间的语义相关度的评测值(和英文的WordSimilarity-353测试集类似),此测试集可以用于测试或者训练中文语义相关度算法。我们以组为单位安排人员进行测试,共分为12组,每组包含20对词。每一组词汇都有20人分别对其相关性进行量化评测, 共有240余人参与了测试。词汇之间相关性的度量值介于0到10之间(0表示这两个词之间毫不相关,10表示这两个词是同义词),我 们将这20个人对某词对的评测结果的平均值作为最终结果。每个人的评价结果请参见“测试集统计结果.xls”。如果您有什么问题或者评论,请您发邮件和我们联系,邮件地址是:xiangwangcn@gmail.com。 此测试集是我们为了测试中文词汇之间的语义相关度算法而构造的,详情请参见我们的论文《基于中文维基百科链接结构与分类体系的语义相关度计算》(作者:汪祥,贾焰,周斌,丁兆云,梁政)。论文尚未发表,发表后您将可以看到。 Words-240测试集得到了国防科技大学613教研室的大力支持,感谢贾焰老师、周斌老师等的指导和帮助。在构造测试集中,著名英文词汇语义相似度的测试集WordSimilarity-353的创立者Lev Finkelstein在如何选择测试集Words-240中词对的问题上进行了热心的指导,在此表示诚挚的感谢。在构造测试集的过程中,湖南师范大学的彭丹同学、湖南大学的陈军同学和国防科技大学的李虎给予了大力协助,在此表示衷心的感谢。国防科技大学、湖南师范大学和湖南大学的240余名同学无偿参与了测试,他们的无私奉献精神直接促使了本测试集的诞生,参加测试的同学有:万芬芬,李大财,吴章彬,尹晋文,邱口,黄江勇,蔡强,王刚,张伟,周晓锋,刘时,徐浩,胡燕,左文豪,吴勇,刘念松,尹波,姚鑫,张右良,周晟,王佳静,何佳,袁功彪,李晋国,谢小红,叶光辉,林建,钟勇才,杨海兵,陈聪,陈超,童国雄,周新云,邹垒,肖天赐,尹邦浩,刘伟,何花,李欢妮,焦丙丰,刘乾,张翠,艾达,伍浩,孙浩然,钟方敬,赵浒,刘哲,龚秀娟,李琦,杨瑞丽,何珂,甘玲,许念,胡蛟,孔梦娟,罗浩,刘芳,廖璨,李冬嫦,白露,皮之云,袁园,潘剑珍,杨厅,徐征,匡牧宇,王薇薇,祁曦婕,宇岳,游凤英,王昕,曹璇,吕性,张志世,杨贵芸,杨雪梅,李腾飞,廖娟,陈娅琦,彭燕,崔文秀,路俊雅,刘雅玲,曾状林,范仁娇,陈玲佳,詹会,孙梦迪,毛本,徐汇,刘婷,黎明阳,刘雨薇,王晓秀,祁美丹,程怡欣,吴之瑶,马超玲,蒋丽娟,刘娜,张芬,阮晓婷,马璞玉,刘贤霖,李西,李小芳,余立,曾惠奇,晓歪,张艳翔,曾田田,张卫,付渔,伍新春,胡朱,苏兴恺,马党,张祥洪,段丽,李文韶,黄红君,陈超,伍月,侯丽华,陆金梅,谢璐璐,谭娜娜,胡海姣,裴晓强、刘建峰,王海波等(由于隐私保护等原因,很多同学的姓名等未在此处列出),在此对他们表示感谢。
1
随机从列表中取出元素: import random dataSet = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]] trainDataSet = random.sample(dataSet, 3) 以下函数,使用于我最近的一个机器学习的项目,将数据集数据按照比例随机划分成训练集数据和测试集数据: import csv import random def getDataSet(proportion): """ :exception 获取训练集和测试集(将数据按比例随机划分) :parame
2021-03-27 15:18:48 38KB python 测试 测试集
1
a) 传感器高频数据:该数据来自于模温机及模具传感器采集的数据,文件夹内每一个模次对应一个csv文件,单个模次时长为40~43s,采样频率根据阶段有20Hz和50Hz两种,含有24个传感器采集的数据; b) 成型机状态数据(data_spc):该数据来自成型机机台,均为表征成型过程中的一些状态数据,每一行对应一个模次,数据维度为86维;
2021-03-22 14:09:20 199.3MB 工业大数据数据集
1