基于N-K安全约束的光热电站电力系统优化调度模型:提升风电消纳与调度经济性,基于N-K安全约束的光热电站电力系统优化调度模型:提升风电消纳与调度经济性,含风电光伏光热电站电力系统N-k安全优化调度模型 关键词:N-K安全约束 光热电站 优化调度 参考文档:《光热电站促进风电消纳的电力系统优化调度》参考光热电站模型; 仿真平台: MATLAB +YALMIP+CPLEX 主要内容:代码主要做的是考虑N-k安全约束的含义风电-光伏-光热电站的电力系统优化调度模型,从而体现光热电站在调度灵活性以及经济性方面的优势。 同时代码还考虑了光热电站对风光消纳的作用,对比了含义光热电站和不含光热电站下的弃风弃光问题,同时还对比了考虑N-k约束下的调度策略区别。 以14节点算例系统为例,对模型进行了系统性的测试,效果良好。 ,N-K安全约束; 光热电站; 优化调度; 电力系统; 弃风弃光; 14节点算例系统,基于N-K安全约束的光热电站优化调度模型研究
2025-04-20 22:21:44 639KB 数据仓库
1
在现代汽车设计领域中,发动机曲轴作为重要的动力输出部件,其性能直接关联到整车的动力效率和可靠性。有限元分析(FEA)是一种高效的数值分析技术,广泛应用于工程领域中对复杂结构进行应力、应变分析。通过有限元分析,工程师能够对曲轴的物理行为进行模拟,以预测其在不同工况下的力学响应,从而在实际生产之前对设计进行优化。 在进行汽车发动机曲轴的有限元分析时,首先需要构建曲轴的几何模型,并对其施加适当的边界条件和载荷。这包括发动机的燃烧压力、惯性力等,这些力将直接影响曲轴的应力分布和变形情况。通过有限元软件,如ANSYS或ABAQUS,工程师可以对曲轴模型进行离散化处理,划分成成百上千的小单元,再通过材料属性赋予这些单元相应的物理特性。 分析完成后,可以从应力云图、位移云图和安全系数图等结果中评估曲轴的性能。根据这些分析结果,工程师可以发现曲轴设计的薄弱环节,如高应力区域或过度变形位置,从而提出针对性的结构修改和优化建议。例如,增加曲轴臂的厚度、改变曲轴轴颈的形状或者添加强化肋等。 在优化设计方面,多目标优化技术尤其受到重视。优化不仅仅是增强曲轴的强度和刚性,还包括减轻重量、降低制造成本和提高加工工艺性等。这些优化目标往往相互冲突,因此需要应用多目标优化算法,如遗传算法、粒子群优化算法等,在权衡这些目标之间找到最佳平衡点。 优化设计还涉及到材料的选择。不同的材料具有不同的力学性能和成本效益,对发动机的性能和经济性有着决定性的影响。在有限元分析的基础上,结合材料力学性能数据,可以对材料进行合理选择和应用。 除了曲轴本身之外,有限元分析和优化设计还涉及发动机与曲轴的配合问题,如曲轴的平衡问题、与活塞和连杆的连接配合,以及整个发动机系统的动态响应等。对这些因素的分析和优化能够显著提高发动机的整体性能。 汽车发动机曲轴的有限元分析和优化设计是一个复杂而精细的过程,它结合了现代数值分析技术和工程设计经验,最终目的是为了获得更加可靠、高效和经济的发动机曲轴设计方案。
2025-04-20 13:40:22 6KB
1
(1) 首先, 明确本课题的研究背景和意义, 对高速列车自动驾驶系统的原理、结构、功能做了深入的分析,将高速列车自动驾驶运行过程分为最优目标速度曲线的优化和对最优目标速度曲线的跟踪。为了对列车自动驾驶的运行效果进行评价,建立以精准停车、准时性、舒适性、能耗等多目标优化指标;对高速列车的运行控制策略进行深入分析,提出改进的混合操控策略来指导行车过程。 (2) 其次, 对高速列车运行过程进行建模和受力分析, 分别建立列车单质点模型和多质点模型, 分析两种模型的受力情况;同时, 对高速列车的工况转换和运行状态进行探讨分析;提出一种基于融合遗传算子的改进粒子群算法的速度曲线优化方法, 获得满足多目标优化的最优目标速度曲线。 (3)最后, 设计高速列车速度控制器, 分析了PID控制器的优缺点,针对其存在的缺陷, 采用自抗扰控制技术, 从而克服PID速度控制器存在的控制效果差、跟踪误差大等问题;对于自抗扰控制器参数调节繁琐问题, 利用融合遗传算子的改进的粒子群算法对其进行参数整定;通过SIMULINK仿真平台, 搭建列车自抗扰速度控制器的仿真模型,控制列车对最优目标速度曲线的的跟踪运行。 ### 高速列车自动驾驶多目标优化的控制策略研究 #### 一、研究背景与意义 随着我国高速铁路网络的快速发展,提升铁路运输效率和服务质量已成为关键议题。高速列车作为铁路运输的重要组成部分,不仅承担着大量的货物运输任务,还服务于广泛的乘客群体。在这一背景下,开展高速列车运行多目标优化的研究具有重大的社会意义和经济价值。 #### 二、研究内容与方法 ##### (一) 高速列车自动驾驶系统概述 高速列车自动驾驶系统是确保列车高效、安全运行的核心技术之一。该系统主要包括以下几个方面: 1. **最优目标速度曲线的优化**:即确定列车在整个行驶过程中的最佳速度分布,旨在减少能耗并提高准时性和乘客舒适度。 2. **最优目标速度曲线的跟踪**:通过精确控制列车的实际速度,确保其能够按照预先设定的最佳速度曲线运行。 为了全面评估自动驾驶系统的性能,本研究建立了以精准停车、准时性、舒适性、能耗等为目标的多目标优化指标体系。 ##### (二) 高速列车运行建模与分析 1. **建模**:分别构建了列车单质点模型和多质点模型,并对两种模型的受力情况进行详细分析。这些模型有助于更准确地理解列车在不同运行状态下的力学特性。 2. **工况转换与运行状态分析**:深入探讨了高速列车在不同工况(如加速、减速、匀速)之间的转换规律及其对列车运行状态的影响。 3. **速度曲线优化**:提出了一种基于融合遗传算子的改进粒子群算法的速度曲线优化方法,旨在获得满足多目标优化条件的最优目标速度曲线。 ##### (三) 速度控制器设计与仿真 1. **PID控制器的局限性**:传统的PID控制器虽然广泛应用于工业控制领域,但在处理具有滞后性或惯性的对象时,其控制效果往往不尽如人意,容易出现跟踪误差大等问题。 2. **自抗扰控制器的应用**:为解决上述问题,本研究采用了自抗扰控制技术设计高速列车的速度控制器。该技术能够有效克服传统PID控制器存在的局限性,显著提高速度控制的精度。 3. **参数整定**:利用融合遗传算子的改进粒子群算法对自抗扰控制器的关键参数进行整定,以期达到最佳的控制效果。 4. **SIMULINK仿真**:在MATLAB/SIMULINK平台上搭建了高速列车自抗扰速度控制器的仿真模型,通过模拟实际运行环境,验证所提出的控制策略的有效性。 #### 三、结论 通过对高速列车自动驾驶系统的深入研究,本项目成功实现了以下几点: 1. **优化的目标速度曲线**:通过建立多目标优化模型,获得了既符合准时性要求又能确保乘客舒适度和能源效率的最优目标速度曲线。 2. **自抗扰速度控制器**:设计了一种基于自抗扰控制技术的速度控制器,并通过改进的粒子群算法对其参数进行了优化,显著提高了速度控制的精度和稳定性。 3. **仿真验证**:利用MATLAB/SIMULINK平台搭建的仿真模型,证明了所提出的控制策略在实际应用中的可行性和有效性。 本研究不仅为高速列车自动驾驶技术的发展提供了有力支持,也为未来铁路运输系统的智能化升级奠定了坚实的基础。
1
基于飞蛾扑火算法的电动汽车充电策略优化:实现高效有序充电以降低目标函数与成本,电力系统 电动汽车 新能源汽车 充电优化算法 基于飞蛾扑火算法的电动汽车群有序充电优化 使用飞蛾扑火算法求解一个充电策略优化问题。 目标是找到电动汽车充电站的最佳充电策略,以最小化目标函数 [号外][号外]程序都调试运行过 保证程序,仿真,代码的质量绝对可以 有问题直接 款。 问题背景: 考虑了一天内(24小时)三个电动汽车充电站的充电策略。 每个充电站有24个时段的充电策略,因此搜索空间的维数为72(3x24)。 每个时段都有一定的电价和电动汽车的充电需求 ,电力系统; 电动汽车; 新能源汽车; 充电优化算法; 飞蛾扑火算法; 充电策略; 搜索空间; 时段电价; 充电需求; 程序调试运行,基于飞蛾扑火算法的电动汽车充电优化策略研究
2025-04-19 13:41:15 334KB gulp
1
基于Matlab Simulink的DC-DC电路Buck-Boost转换器设计:fs=20kHz,电感电容参数优化,小信号建模与闭环控制系统仿真结果,Matlab Simulink DC-DC电路Buck与Boost转换器设计:电感电容参数优化、小信号建模与闭环控制系统仿真结果,Matlab simulinkDC DC电路buck、boost,要求fs=20kHz, 输入电压自定,输出侧接负载或电网。 基本要求: 1)设计电路电感、电容参数,要求电感电流纹波、电容电压纹波不超过±10%; 2)建立该电路的小信号模型; 3)利用波特图法设计闭环控制系统结构和参数; 4)Matlab仿真结果。 ,核心关键词:Matlab; Simulink; DC-DC电路; Buck-Boost; 参数设计; 纹波; 小信号模型; 闭环控制系统; 波特图法; 仿真结果。,Matlab Simulink DC-DC Buck-Boost电路设计与仿真
2025-04-19 13:15:50 1.46MB
1
Matlab代码:含热网的综合能源系统(IES)优化运行 风电、光伏、CHP机组(燃气燃煤)、燃气锅炉、火力发电机组,吸收式制冷机、电制冷机、蓄电池,蓄热罐等设备 负荷类型:冷、热、电 优化目标:IES(综合能源系统)的运行成本最小 成本主要包括:燃气成本、运行维护成本,碳排放惩罚成本、可再生能源丢弃惩罚成本 优化算法:混合整数线性规划,凸优化,非线性向线性的转化等 优化结果:得到系统的最优调度方案及最小运运行成本。 程序注释详细,有助于提高IES优化程序编写的能力 综合能源系统(IES)是一个集成了多种能源产生、转换、存储和消费设施的系统。在这些设施中,包括了风力发电、光伏发电、联合循环发电机组(CHP),它们可以使用燃气或燃煤作为燃料。此外,还包括了传统的燃气锅炉和火力发电机组,以及用于电力和热能管理的设备,例如吸收式制冷机、电制冷机、蓄电池和蓄热罐等。该系统的负荷类型主要是冷、热、电三种,对应着我们的日常生活中最为常见的能源使用形式。 优化目标是使得IES的运行成本最小化,这其中包括了燃气成本、运行和维护成本、碳排放带来的环境成本以及对可再生能源未能充分利用的惩罚成本。为了实现这一目标,研究者们采用了一系列优化算法,如混合整数线性规划、凸优化等。这些算法能够将非线性问题转化为线性问题进行处理,提高求解的效率和准确性。 优化的结果是获得一个最优的调度方案,这个方案能够指导系统的各个部分如何协同工作以达到最小的运行成本。这个过程涉及到对多种设备运行状况的统筹考虑,包括何时启动、关闭设备,如何分配负载,以及如何高效地利用存储设备。 此外,该Matlab代码的程序注释非常详细,这对于理解代码逻辑、提高IES优化程序编写的能力具有重要的帮助作用。注释清晰地解释了每一部分代码的功能和算法选择的原理,使得其他研究者或工程师在阅读和修改代码时更加容易上手,同时也有助于代码的维护和后续的开发工作。 在探讨电动工具中的电钻与电扳手控制方案的文档中,我们可以了解到电动工具工作原理及应用,虽然与IES的主题不同,但反映出文件集合中包含不同领域的技术资料。类似的,通过分析其他文件内容,我们可以获取IES系统优化运行的背景介绍、风电与光伏机组在IES中的具体应用、基于IES优化运行的技术探索等多方面的信息。这些内容对于构建一个全面的IES优化知识体系至关重要。 总体来说,这些文件提供了一个全面的视角来理解和优化综合能源系统。通过深入分析这些资料,可以对IES的构建、运行和优化有更深层次的认识,为实现更加高效和可持续的能源管理提供理论和实践的支持。
2025-04-18 22:33:42 51KB xhtml
1
内容概要:本文详细介绍了使用海康威视工业相机和YOLOv5进行目标检测的完整解决方案。首先,文章阐述了系统的整体架构,包括海康相机SDK用于图像采集,YOLOv5模型通过LibTorch在C++中进行推理,并将整个流程封装成DLL供上位机调用。接着,文中深入探讨了图像采集过程中需要注意的细节,如回调函数处理、触发模式配置以及BGR到RGB的格式转换。对于推理部分,则强调了DLL接口的设计、内存管理和性能优化措施,如双缓冲队列、GPU加速预处理和共享内存的使用。此外,还讨论了不同平台上(如MFC、Qt、LabVIEW)的具体调用方式及其注意事项。最后,针对常见的部署问题提供了具体的解决方案,如电磁干扰导致的相机断连、模型误检和内存泄漏等问题。 适合人群:从事工业视觉系统开发的技术人员,尤其是有一定C++编程基础并熟悉深度学习框架的研究者。 使用场景及目标:适用于需要在工业环境中实施高效、稳定的目标检测任务的企业和个人开发者。通过本方案,可以在保持高精度的同时提高处理速度,降低延迟,确保系统的可靠性和鲁棒性。 其他说明:文中不仅提供了详细的代码示例和技术细节,还分享了许多实践经验,帮助读者更好地理解和应用这套方案。同时,作者也指出了一些潜在的风险点和应对策略,使读者能够更加从容地面对实际项目中的挑战。
2025-04-18 10:59:34 184KB
1
Comsol油浸式变压器多物理场耦合仿真:电磁、温度与流体分析的深度探究,助力稳定运行与性能优化,Comsol油浸式变压器多物理场耦合仿真:解析电磁热流体行为及内部温度分布学习资料与模型,Comsol油浸式变压器电磁-温度-流体多物理场耦合仿真;可以得到变压器稳定运行时内部热点温度及油流速度分布,提供comsol详细学习资料及模型。 ,核心关键词:Comsol油浸式变压器;电磁-温度-流体多物理场耦合仿真;内部热点温度;油流速度分布;comsol详细学习资料;模型。,Comsol多物理场耦合仿真:变压器内部温度与流体分布研究
2025-04-17 15:52:17 1.45MB
1