【图像融合】基于matlab小波变换(加权平均法+局域能量+区域方差匹配)图像融合【含Matlab源码 1819期】.md
2024-11-30 17:05:13 9KB
1
Hough 变换(Hough Transform)是一种常用的检测图形的算法。主要原理是通过在参数空间中的投票统计来检测图像中的基本形状。 它通过搜索特定形状(如直线,圆,椭圆等)在参数空间的累加器中的局部最大值来检测形状。Hough 变换主要用于检测图像中的基本形状,如直线,圆等。 用于图像处理领域的经典算法,Hough直线检测、圆检测、椭圆检测的c++算法实现
2024-10-29 10:01:35 96.02MB 图像处理 霍夫变换
1
针对传统对比度增强算法对图像增强的不足,提出一种基于形态滤波重构原图像的对比度增强方法。该方法使用多尺度top-hat变换提取图像多尺度下的亮、暗细节特征,并根据多尺度下局部细节特征的重要性,利用非线性函数对这些特征进行反差增强,突出图像隐藏的信息。实验结果表明,与传统算法相比,该方法有效的增强了图像的对比度,且能抑制噪声放大,视觉效果更好,避免了传统对比度增强算法存在的过增强或细节增强不足的问题,适用范围较广。
2024-10-22 23:16:00 798KB
1
FFT(快速傅里叶变换)是一种将信号从时域(随时间变化的信号)转换为频域(不同频率成分的信号)的算法。使用STM32F407微控制器和FFT来分析正弦信号的幅值、频率和相位差。
2024-10-20 13:53:23 9.98MB FFT STM32 快速傅里叶变换
1
同步整流buck变换器simulink模型,双闭环控制,PWM控制,效果很好。
2024-10-10 19:22:40 39KB matlab/simulink
1
本教程详细介绍了如何使用Python和NumPy库实现快速傅里叶变换(FFT)并绘制频谱图,适用于信号处理和频谱分析。教程从环境设置开始,指导用户安装必要的库并导入相关模块。接着,通过生成示例信号、计算FFT、绘制频谱图等步骤,展示了完整的实现过程。具体代码示例包括生成包含多频率成分的信号、使用NumPy计算频谱以及使用Matplotlib绘制频谱图。通过本教程,用户可以掌握使用Python进行傅里叶变换和频谱分析的基本方法,适用于音频分析、振动分析等多种应用场景。希望该教程能帮助用户在信号处理和数据分析领域取得更大进步。 本教程详细介绍了如何使用Python和NumPy库实现快速傅里叶变换(FFT)并绘制频谱图,适用于信号处理和频谱分析。教程从环境设置开始,指导用户安装必要的库并导入相关模块。接着,通过生成示例信号、计算FFT、绘制频谱图等步骤,展示了完整的实现过程。具体代码示例包括生成包含多频率成分的信号、使用NumPy计算频谱以及使用Matplotlib绘制频谱图。通过本教程,用户可以掌握使用Python进行傅里叶变换和频谱分析的基本方法,适用于音频分析、振动分析等多种应用场景。 ### 使用Python进行FFT傅里叶变换并绘制频谱图 #### 一、傅里叶变换简介及背景 傅里叶变换是一种重要的数学工具,能够将时域信号转换为频域信号,这对于理解和分析信号的组成至关重要。傅里叶变换不仅在工程学中应用广泛,在物理学、信号处理、图像处理等多个领域都有重要作用。快速傅里叶变换(FFT)是傅里叶变换的一种高效算法,特别适合于处理大规模数据。 #### 二、环境准备与基础配置 ##### 2.1 安装必要的库 要使用Python进行傅里叶变换和绘制频谱图,首先需要安装两个核心库:NumPy 和 Matplotlib。这两个库可以通过Python的包管理器pip安装: ```bash pip install numpy matplotlib ``` ##### 2.2 导入库 安装完成后,需要在Python脚本中导入这些库: ```python import numpy as np import matplotlib.pyplot as plt ``` #### 三、生成示例信号 为了展示傅里叶变换的过程,我们需要先生成一个包含多频率成分的示例信号。例如,一个由50Hz和120Hz两个频率组成的正弦波信号: ```python # 采样频率 sampling_rate = 1000 # 信号持续时间 duration = 1.0 # 时间轴 t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False) # 生成示例信号:50Hz和120Hz的正弦波叠加 signal = 0.5 * np.sin(2 * np.pi * 50 * t) + 0.3 * np.sin(2 * np.pi * 120 * t) ``` #### 四、实现快速傅里叶变换(FFT) 使用NumPy库中的`fft`函数来计算信号的频谱: ```python # 计算FFT fft_result = np.fft.fft(signal) # 计算频率轴 freqs = np.fft.fftfreq(len(fft_result), 1/sampling_rate) ``` #### 五、绘制频谱图 完成FFT计算后,可以使用Matplotlib绘制频谱图,显示频率成分: ```python # 只取正频率部分 positive_freqs = freqs[:len(freqs)//2] positive_fft = np.abs(fft_result)[:len(fft_result)//2] # 绘制频谱图 plt.figure(figsize=(10, 6)) plt.plot(positive_freqs, positive_fft) plt.title('Frequency Spectrum') plt.xlabel('Frequency (Hz)') plt.ylabel('Amplitude') plt.grid() plt.show() ``` #### 六、实例演示 下面是一段完整的代码示例,整合了上述所有步骤: ```python import numpy as np import matplotlib.pyplot as plt # 采样频率 sampling_rate = 1000 # 信号持续时间 duration = 1.0 # 时间轴 t = np.linspace(0, duration, int(sampling_rate * duration), endpoint=False) # 生成示例信号:50Hz和120Hz的正弦波叠加 signal = 0.5 * np.sin(2 * np.pi * 50 * t) + 0.3 * np.sin(2 * np.pi * 120 * t) # 计算FFT fft_result = np.fft.fft(signal) # 计算频率轴 freqs = np.fft.fftfreq(len(fft_result), 1/sampling_rate) # 只取正频率部分 positive_freqs = freqs[:len(freqs)//2] positive_fft = np.abs(fft_result)[:len(fft_result)//2] # 绘制频谱图 plt.figure(figsize=(10, 6)) plt.plot(positive_freqs, positive_fft) plt.title('Frequency Spectrum') plt.xlabel('Frequency (Hz)') plt.ylabel('Amplitude') plt.grid() plt.show() ``` #### 七、总结与展望 通过本教程的学习,您已经掌握了使用Python和NumPy实现快速傅里叶变换(FFT),并使用Matplotlib绘制频谱图的方法。这种技术可以帮助您分析信号的频率成分,广泛应用于信号处理、音频分析、振动分析等领域。接下来,您可以尝试使用不同的信号进行实验,进一步理解傅里叶变换的应用。希望本教程能帮助您在信号处理和频谱分析领域取得更大的进步。
2024-09-20 15:58:44 3KB matplotlib python fft
1
matlab如何敲代码用于MATLAB(R)的HMD校准工具箱 对于使用这种HMD的任何AR应用来说,用用户的眼睛正确看透的头戴式光学显示器(OST-HMD)的空间配准是必不可少的问题。 该工具箱旨在提供OST-HMD校准的核心功能,包括基于眼睛定位的方法和直接线性变换,并共享我们用于实验的评估方案。 如何使用它: 要求:MATLAB(带有统计工具箱) 在您的Matlab控制台上该仓库的根目录下,只需键入, >> main 然后您将看到一些校准结果,如下所示: 如果要使用此工具箱的核心功能进行自己的校准,请查阅以下功能文件: >> % Functions that give you 3x4 projection matrix >> >> % Eye position-based calibration (Full/Recycle Setups) >> % for Interaction-free Display CAlibration (INDICA) method. >> P = INDICA_Full (R_WS, R_WT, t_WT, t_ET, t_WS, ax, ay, w
2024-09-18 11:22:12 59KB 系统开源
1
**FOC控制技术详解** **1. FOC(Field-Oriented Control)的本质与核心思想** FOC(Field-Oriented Control)是一种先进的电机控制策略,其核心思想是通过实时控制电机的定子磁场,使其始终与转子磁链保持90度的相位差,以实现最佳的转矩输出。这被称为超前角控制。电机的电角度用于指示转子的位置,以便在固定坐标系和旋转坐标系之间转换磁场,进而生成精确的PWM信号来控制电机。电角度的定义可以灵活,如轴与轴的夹角,主要目的是简化Park和反Park变换的计算。 **2. 超前角控制的原理** 超前角控制的关键在于使电机的磁通与转矩方向垂直,以获得最大的转矩。当转子磁场相对于定子磁场滞后90度时,电机的扭矩最大。因此,通过实时调整定子电流,使它超前于转子磁链90度,可以达到最优的扭矩性能。 **3. Clark变换** Clark变换是将三相交流电流转换为两相直轴(d轴)和交轴(q轴)的直流分量的过程,目的是将复杂的三相系统解耦为易于控制的两相系统。在Clark变换中,通过一定的系数(等幅值变换或恒功率变换)将三相电流转换为两相电流,使得电机的动态特性更易于分析和控制。 **3.1 数学推导** Clark变换的公式如下: \[ I_d = k(I_a - \frac{1}{\sqrt{3}}(I_b + I_c)) \] \[ I_q = k(\frac{1}{\sqrt{3}}(I_a + I_b) - I_c) \] 其中,\(k\) 是变换系数,等幅值变换时 \(k = \frac{1}{\sqrt{3}}\),而恒功率变换时 \(k = \frac{2}{\sqrt{3}}\)。 **4. Park变换与逆变换** Park变换是将两相直轴和交轴电流进一步转换为旋转变压器坐标系(d轴和q轴),以便进行磁场定向。逆Park变换则将旋转变压器坐标系的电流再转换回直轴和交轴电流。这两个变换在数学上涉及到正弦和余弦函数,对于实时控制至关重要。 **5. SVPWM(Space Vector Pulse Width Modulation)** SVPWM是一种高效的PWM调制技术,通过优化电压矢量的分配,实现接近理想正弦波的电机电压。SVPWM涉及到扇区判断、非零矢量和零矢量的作用时间计算、过调制处理以及扇区矢量切换点的确定。这一过程确保了电机高效、低谐波的运行。 **6. PID控制** PID(比例-积分-微分)控制器是自动控制领域常见的反馈控制策略。离散化处理是将连续时间的PID转换为适合数字处理器的形式。PID控制算法包括位置式和增量式两种,各有优缺点,适用于不同的控制场景。积分抗饱和是解决积分环节可能导致的饱和问题,通过各种方法如限幅、积分分离等避免控制器性能恶化。 **7. 磁链圆限制** 磁链圆限制是限制电机磁链的模长,以防止磁饱和现象。通过对MAX_MODULE和START_INDEX的设定,确保电机在安全的工作范围内运行,同时保持良好的控制性能。 以上知识点涵盖了FOC控制的基础理论和实际应用,包括数学推导、算法实现以及相关的控制策略。通过深入理解并实践这些内容,可以有效地设计和优化电机控制系统。
2024-09-12 11:01:38 7.34MB simulink
1
基于小波变换的多聚焦图像融合中,融合方法、小波基和小波分解层数的选取是关键技术。研究一种基于区域能量的多聚焦图像融合方法,分析比较小波基、小波分解层数对图像融合结果的影响,利用熵、峰值信噪比、空间频率对融合图像进行评价。结果表明:提出的融合方法能够得到较好的效果,采用bior2.2 小波基、分解层数为4~6 时得到较好的融合效果,该结果能为实际应用中小波参数的选择提供参考。
2024-09-12 09:24:43 1.58MB 图像处理 小波变换 图像融合
1
在散斑去噪过程中保持图像边缘纹理特征,是光学相干层析图像处理技术的难题。散斑去噪过程中的散斑残留和边缘纹理模糊是该难题的主要诱导因素。为解决这一难题,提出一种基于剪切波变换的改进全变分散斑去噪方法。该方法结合剪切波变换和传统全变分模型,对不同图像区域采用针对性的去噪策略,兼顾散斑去噪与纹理保留,提高了光学相干层析图像的噪声抑制效果。对不同生理、病理状态下的视网膜光学相干层析图像进行测试,结果表明:该方法通过采用区域针对性策略改进了噪声抑制能力,通过引入剪切波变换方法提高了边缘纹理保持能力,进而同时实现散斑去除和纹理保留。此外,与其他散斑去噪方法进行对比,验证了该方法的有效性。
2024-09-05 11:01:21 8.53MB 图像处理 散斑去噪 边缘纹理 光学相干
1