cnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-mastercnn-bilstm-attention-time-series-prediction_keras-ma
2022-06-02 11:05:01 501KB cnn keras 文档资料 python
给大家分享一套课程——Keras深度学习入门与实战,完整版,提供源码、课件、数据。 本课程介绍深度学习和神经网络的概念,并使用keras框架带领同学们构建各种各样的机器学习网络和深度学习网络,非常适合入门学习。 希望对大家学习有帮助。
2022-05-30 12:05:45 449B 深度学习 keras 人工智能 python
1
医疗图像分类,深度学习图像分类算法,带前后端,一个完整的癌症识别项目,keras框架+flask vue
2022-05-30 12:05:44 209.56MB 图像分类 深度学习 医疗图像分类
状态:存档(代码按原样提供,预计无更新) 伯特·凯拉斯 Google BERT(来自Transformers的双向编码器表示)的Keras实现和OpenAI的Transformer LM能够使用微调API加载预训练的模型。 更新:得益于 TPU支持进行推理和训练 如何使用它? # this is a pseudo code you can read an actual working example in tutorial.ipynb or the colab notebook text_encoder = MyTextEncoder ( ** my_text_encoder_params ) # you create a text encoder (sentence piece and openai's bpe are included) lm_generator = lm_generator ( text_encoder , ** lm_generator_params ) # this is essentially your data reader (single sente
2022-05-28 20:02:02 43KB nlp theano tensorflow keras
1
基于卷积神经网络手写体数学公式识别与计算 一、项目介绍 项目已经可以计算含有PI或e的四则运算公式及指数运算公式。 项目可以进行较为简单的一元一次方程或一元二次方程计算。 测试网站 项目使用tensorflow2.0作为开发框架,采用keras搭建卷积神经网络。 数据集采集了mnist及emnist中的数字、字母数据,运算符号为项目组手写制作。 图片分割使用了连通域与水平投影共同实现。 项目通过flask框架部署在服务器。 这是本人参与制作的第一个比课程设计大的项目。仅用来记录自己的代码。 同时也欢迎各位大佬指点。 二、项目主要代码及功能介绍 网络搭建及模型制作 train_model/tf_keras_cnn_mnist_model.ipynb 数据量较小采用数据增强 重复两层每两次卷积一次池化一次Dropout的操作,最后softmax全连接 由于租借用的训练服务器到期,故没有训练好的
2022-05-28 10:18:33 12.59MB JavaScript
1
鉴于最近一段时间一直在折腾的CNN网络效果不太理想,主要目标是为了检测出图像中的一些关键点,可以参考人脸的关键点检测算法。 但是由于从数据集的制作是自己完成的,所以数据集质量可能有待商榷,训练效果不好的原因可能也是因为数据集没有制作好(标点实在是太累了)。 于是想看看自己做的数据集在进入到网络后那些中间的隐藏层到底发生了哪些变化。 今天主要是用已经训练好的mnist模型来提前测试一下,这里的mnist模型的准确度已经达到了98%左右。 使用的比较简单的一个模型: def simple_cnn(): input_data = Input(shape=(28, 28, 1)) x = Con
2022-05-27 17:28:55 89KB AS keras ras
1
keras实现基于语义理解的自动文摘实现;实现中文文本清洗处理,词向量引入,深度学习实现基于语义理解的中文摘要自动生成。
2022-05-27 13:32:17 11KB textsum
1
人工智能基础视频教程零基础入门课程 第十四章 人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。 第一章 人工智能开发及远景介绍(预科) 第二章 线性回归深入和代码实现 第三章 梯度下降和过拟合和归一化 第四章 逻辑回归详解和应用 第五章 分类器项目案例和神经网络算法 第六章 多分类、决策树分类、随机森林分类 第七章 分类评估、聚类 第八章 密度聚类、谱聚类 第九章 深度学习、TensorFlow安装和实现 第十章 TensorFlow深入、TensorBoard 十一章 DNN深度神经网络手写图片识别 十二章 TensorBoard可视化 十三章 卷积神经网络、CNN识别图片 十四章 卷积神经网络深入、AlexNet模型 十五章 Keras深度学习框架
2022-05-26 00:38:39 669.19MB 人工智能 机器学习 TensorFlow TensorBoard
1
人工智能-项目实践-图像识别-keras使用迁移学习实现医学图像二分类(AK、SK) 问题描述 要解决的是一个医学图像的二分类问题,有AK和SK两种病症,根据一定量数据,进行训练,对图像进行预测。 解决思路 整体上采用迁移学习来训练神经网络,使用InceptionV3结构,框架采用keras. 具体思路: 读取图片数据,保存成.npy格式,方便后续加载 标签采用one-hot形式,由于标签隐藏在文件夹命名中,所以需要自行添加标签,并保存到.npy文件中,方便后续加载 将数据分为训练集、验证集、测试集 使用keras建立InceptionV3基本模型,不包括顶层,使用预训练权重,在基本模型的基础上自定义几层神经网络,得到最后的模型,对模型进行训练 优化模型,调整超参数,提高准确率 在测试集上对模型进行评估,使用精确率、召回率 对单张图片进行预测,并输出每种类别的概率
包括深度学习keras快速入门+tensorflow&keras;深度学习+python数值分析基础三个资源
2022-05-24 14:58:50 103.9MB keras tensorflow 深度学习 数值分析
1