基于卷积神经网络手写体数学公式识别与计算 一、项目介绍 项目已经可以计算含有PI或e的四则运算公式及指数运算公式。 项目可以进行较为简单的一元一次方程或一元二次方程计算。 测试网站 项目使用tensorflow2.0作为开发框架,采用keras搭建卷积神经网络。 数据集采集了mnist及emnist中的数字、字母数据,运算符号为项目组手写制作。 图片分割使用了连通域与水平投影共同实现。 项目通过flask框架部署在服务器。 这是本人参与制作的第一个比课程设计大的项目。仅用来记录自己的代码。 同时也欢迎各位大佬指点。 二、项目主要代码及功能介绍 网络搭建及模型制作 train_model/tf_keras_cnn_mnist_model.ipynb 数据量较小采用数据增强 重复两层每两次卷积一次池化一次Dropout的操作,最后softmax全连接 由于租借用的训练服务器到期,故没有训练好的
2022-05-28 10:18:33 12.59MB JavaScript
1
鉴于最近一段时间一直在折腾的CNN网络效果不太理想,主要目标是为了检测出图像中的一些关键点,可以参考人脸的关键点检测算法。 但是由于从数据集的制作是自己完成的,所以数据集质量可能有待商榷,训练效果不好的原因可能也是因为数据集没有制作好(标点实在是太累了)。 于是想看看自己做的数据集在进入到网络后那些中间的隐藏层到底发生了哪些变化。 今天主要是用已经训练好的mnist模型来提前测试一下,这里的mnist模型的准确度已经达到了98%左右。 使用的比较简单的一个模型: def simple_cnn(): input_data = Input(shape=(28, 28, 1)) x = Con
2022-05-27 17:28:55 89KB AS keras ras
1
keras实现基于语义理解的自动文摘实现;实现中文文本清洗处理,词向量引入,深度学习实现基于语义理解的中文摘要自动生成。
2022-05-27 13:32:17 11KB textsum
1
人工智能基础视频教程零基础入门课程 第十四章 人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。 第一章 人工智能开发及远景介绍(预科) 第二章 线性回归深入和代码实现 第三章 梯度下降和过拟合和归一化 第四章 逻辑回归详解和应用 第五章 分类器项目案例和神经网络算法 第六章 多分类、决策树分类、随机森林分类 第七章 分类评估、聚类 第八章 密度聚类、谱聚类 第九章 深度学习、TensorFlow安装和实现 第十章 TensorFlow深入、TensorBoard 十一章 DNN深度神经网络手写图片识别 十二章 TensorBoard可视化 十三章 卷积神经网络、CNN识别图片 十四章 卷积神经网络深入、AlexNet模型 十五章 Keras深度学习框架
2022-05-26 00:38:39 669.19MB 人工智能 机器学习 TensorFlow TensorBoard
1
人工智能-项目实践-图像识别-keras使用迁移学习实现医学图像二分类(AK、SK) 问题描述 要解决的是一个医学图像的二分类问题,有AK和SK两种病症,根据一定量数据,进行训练,对图像进行预测。 解决思路 整体上采用迁移学习来训练神经网络,使用InceptionV3结构,框架采用keras. 具体思路: 读取图片数据,保存成.npy格式,方便后续加载 标签采用one-hot形式,由于标签隐藏在文件夹命名中,所以需要自行添加标签,并保存到.npy文件中,方便后续加载 将数据分为训练集、验证集、测试集 使用keras建立InceptionV3基本模型,不包括顶层,使用预训练权重,在基本模型的基础上自定义几层神经网络,得到最后的模型,对模型进行训练 优化模型,调整超参数,提高准确率 在测试集上对模型进行评估,使用精确率、召回率 对单张图片进行预测,并输出每种类别的概率
包括深度学习keras快速入门+tensorflow&keras;深度学习+python数值分析基础三个资源
2022-05-24 14:58:50 103.9MB keras tensorflow 深度学习 数值分析
1
AcGan论文解读及Keras实现-附件资源
2022-05-24 13:31:05 106B
1
用于分布和不确定性估计的混合密度网络:使用Keras(TensorFlow)进行分布和不确定性估计的通用混合密度网络(MDN)实现
1
神经网络的三种可视化方法——用keras和MXNet(gluon)实现 目录神经网络的三种可视化方法——用keras和MXNet(gluon)实现概述keras实现keras特征图可视化keras可视化滤波器(卷积核)的最大响应图keras可视化热力图MXNet(Gluon)实现Gluon可视化特征图Gluon可视化滤波器(卷积核)的最大响应图Gluon可视化热力图 keras之父弗朗西斯科肖莱在他的书中提到了CNN的三种常用可视化方法, 同样的算法原理在李宏毅深度学习教程的ExplainableML单元也有提及, 本博客分别使用keras和MXNet(gluon)框架实现了这三种可视化算法,
2022-05-23 22:40:24 4.02MB AS keras ras
1
Keras:基于Theano和TensorFlow的深度学习库 这就是Keras Keras是一个高层神经网络库,Keras由纯Python编写而成并基Tensorflow或Theano。Keras 为支持快 速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras: 简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性) 支持CNN和RNN,或二者的结合 支持任意的链接方案(包括多输入和多输出训练) 无缝CPU和GPU切换 Keras适用的Python版本是:Python 2.7-3.5 Keras的设计原则是 模块性:模型可理解为一个独立的序列或图,完全可配置的模块以最少的代价自由组合在一起。具 体而言,网络层、损失函数、优化器、初始化策略、激活函数、正则化方法都是独立的模块,你可 以使用它们来构建自己的模型。 极简主义:每个模块都应该尽量的简洁。每一段代码都应该在初次阅读时都显得直观易懂。没有黑 魔法,因为它将给迭代和创新带来麻烦。 易扩展性:添加新模块超级简单的容易,只需要仿照现有的模块编写新的类或函数即可。创建新模 块的便利性使得Keras更适合于先进的研究工作。 与Python协作:Keras没有单独的模型配置文件类型(作为对比,caffe有),模型由python代码描 述,使其更紧凑和更易debug,并提供了扩展的便利性。 Keras从2015年3月开始启动,经过一年多的开发,目前Keras进入了1.0的时代。Keras 1.0依然遵循相 同的设计原则,但与之前的版本相比有很大的不同。如果你曾经使用过此前的其他版本Keras。你或许 会关心1.0的新特性。 泛型模型:简单和强大的新模块,用于支持复杂深度学习模型的搭建。 更优秀的性能:现在,Keras模型的编译时间得到缩短。所有的RNN现在都可以用两种方式实现, Keras中文文档 以供用户在不同配置任务和配置环境下取得最大性能。现在,基于Theano的RNN也可以被展开, 以获得大概25%的加速计算。 测量指标:现在,你可以提供一系列的测量指标来在Keras的任何监测点观察模型性能。 更优的用户体验:我们面向使用者重新编写了代码,使得函数API更简单易记,同时提供更有效的 出错信息。 新版本的Keras提供了Lambda层,以实现一些简单的计算任务。 ... 如果你已经基于Keras0.3编写了自己的层,那么在升级后,你需要为自己的代码做以下调整,以 在Keras1.0上继续运行。请参考编写自己的层 关于Keras-cn 本文档是Keras文档的中文版,包括keras.io的全部内容,以及更多的例子、解释和建议,目前,文档 的计划是: 1.x版本:现有keras.io文档的中文翻译,保持与官方文档的同步 2.x版本:完善所有【Tips】模块,澄清深度学习中的相关概念和Keras模块的使用方法 3.x版本:增加Keras相关模块的实现原理和部分细节,帮助用户更准确的把握Keras,并添加更多 的示例代码 现在,keras-cn的版本号将简单的跟随最新的keras release版本 由于作者水平和研究方向所限,无法对所有模块都非常精通,因此文档中不可避免的会出现各种错误、 疏漏和不足之处。如果您在使用过程中有任何意见、建议和疑问,欢迎发送邮件 到moyan_work@foxmail.com与我取得联系。 您对文档的任何贡献,包括文档的翻译、查缺补漏、概念解释、发现和修改问题、贡献示例程序等,均 会被记录在致谢,十分感谢您对Keras中文文档的贡献! 同时,也欢迎您撰文向本文档投稿,您的稿件被录用后将以单独的页面显示在网站中,您有权在您的网 页下设置赞助二维码,以获取来自网友的小额赞助。 如果你发现本文档缺失了官方文档的部分内容,请积极联系我补充。 本文档相对于原文档有更多的使用指导和概念澄清,请在使用时关注文档中的Tips,特别的,本文档的 额外模块还有: 一些基本概念:位于快速开始模块的一些基本概念简单介绍了使用Keras前需要知道的一些小知 识,新手在使用前应该先阅读本部分的文档。 Keras安装和配置指南,提供了详细的Linux和Windows下Keras的安装和配置步骤。 深度学习与Keras:位于导航栏最下方的该模块翻译了来自Keras作者博客keras.io和其他Keras相关 博客的文章,该栏目的文章提供了对深度学习的理解和大量使用Keras的例子,您也可以向这个栏 目投稿。 所有的文章均在醒目位置标志标明来源与作者,本文档对该栏目文章的原文不具有任何处 置权。如您仍觉不妥,请联系本人(moyan_work@foxmail.com)删除。
2022-05-23 21:13:50 3.47MB Keras中文
1