我国绿色煤炭资源量有限,实施煤炭精准智能开采是未来绿色采矿的必由之路,其中地质保障技术体系是重要的基础。从煤炭开采基础地质及其勘探、综合地球物理探测、地质钻探和矿井地质信息技术平台等方面,系统地分析了我国矿井地质保障技术体系的现状,提出了煤炭精准智能开采模式下矿井地质保障技术的发展趋势和方向。通过大数据、云计算、互联网等技术平台,采用地质调查、钻探、物探、化探、GIS等多种地学参数信息,构筑基于天空、地面、井孔、地下、采煤工作面、长钻孔等全空间、全方位地质动态模型的保障技术体系,为煤炭精准智能开采提供所需的透明地质条件;研发三维和四维地球物理精细探测新方法、新技术,研制震、电、磁、核、声、光等物理参数主、被动源综合探测与成像智能化仪器设备,实现对开采地质条件的精准判识;发展由探测到监测,以及与掘进机械、采煤机械等一体化的监控预报识别体系,对影响开采的多灾源地质因素进行智能预测及监控,不断建设和完善煤炭资源综合开发保障技术体系;结合移动智能终端APP,逐步完成煤炭资源开发过程中井下图、景、物、人、设备等人机共享共管,实现高度信息化和智慧化,切实保障矿井安全高效生产;通过进一步加强高素质复
1
将三维开源几何内核Open CASCADE和基于地质统计学的普通克里金(Ordinary Kriging)插值算法从底层相结合,设计了在CAD几何操作核心之上加入地质统计学插值算法的三维水文地质建模软件开发架构。利用Open CASCADE的三维图形渲染、可视化交互、编辑等功能和普通克里金的地质统计学插值功能,以Visual Studio为开发工具,以C++和Python为开发语言,SQLite作为地质数据库设计并开发了Hydrogeo3D矿井水文地质建模软件,从而实现了建模过程局部细节可编辑的功能。
1
从近40 a来我国煤炭工业的发展进程,分析和总结了我国煤矿安全高效开采地质保障系统建设随着煤炭工业从炮采和普采向机械化开采的转变,经历了从煤田地质学发展到采矿工程地质学和矿井工程物探的发展过程,并逐步构建了煤矿安全高效矿井地质保障系统的基本框架。20世纪90年代中后期,随着煤矿采区高分辨三维地震勘探技术体系研究成果的建立和完善,使煤矿精细地质构造、煤与瓦斯突出、矿井突水通道等灾害隐患的探测精度和预测准确度大大提高,促进了我国煤矿安全高效矿井的迅速发展,煤矿安全高效矿井地质保障系统也走向成熟并在全国煤炭系统推广应用。笔者认为,虽然煤矿地质保障系统在保障开采安全、提高开采效率等方面取得了显著的成效,但随着信息技术的深度融合和煤矿机械化水平的进一步提高,煤炭绿色开采、智能精准开采等对煤矿安全高效开采地质保障系统提出了更高的要求,矿井地质透明化是当前煤矿安全高效矿井地质保障系统发展的努力方向。其重点任务是:① 在统一的数据融合基础上,进一步提高地球物理勘探精度,提高矿井地质的透明化水平,构建煤矿智能开采地质保障平台;② 研发与惯导技术一体的高分辨煤岩辨识仪器装备,实现对工作面前方5 m范围煤岩
2022-02-16 11:24:36 7.07MB 煤矿安全 高效开采 地质保障 矿井地质
1
煤炭智能开采是我国煤炭工业在新一轮技术变革下的战略选择,是实现煤矿安全高效生产的必由之路,地质保障技术可为煤炭智能开采提供准确可靠的地质数据支撑,且能有效探查隐蔽致灾地质因素以减少煤矿生产灾害事故的发生。我国煤炭地质保障技术从服务于资源勘查、高产高效矿井建设到服务于煤矿安全高效生产,从基础地质勘查工作、GIS系统到隐蔽致灾因素探查,不同时期的煤炭地质保障技术具有鲜明的特点。分析了在煤炭智能开采背景下地质保障技术面临的3个难题:地质条件探测精度不足、动态地质信息监测困难与智能开采缺乏统一的地质基础。在前期研究的基础上,论述了面向煤炭智能开采的地质保障技术体系,主要包含高精度综合探测、一体化智能在线监测、工作面地质透明化三大关键技术,通过煤炭开采过程中地质信息综合精准感知、动态融合、同步映射和孪生反馈,实现地质保障的数字化、三维可视化和智能化。面对新一轮能源科技革命和产业变革,针对新形势下煤矿安全发展新要求,提出了煤炭智能开采地质保障云平台、技术标准体系构建的发展方向,平台化、标准化的技术体系可为煤炭安全高效智能绿色开采提供可靠的地质保障。
2022-02-16 11:23:49 1.32MB 智能开采 地质保障 透明矿井 综合探测
1
矿井透明地质条件是煤炭精准开采智慧化的重要基础。结合矿井静态地质要素大数据信息库、多灾害源全程信息感知与监测、动态地质要素虚拟现实展示、特殊地质因素动态评判与风险判识、预警等智慧模块的交互应用,从静态与动态地质模型角度提出实现煤炭精准生产全过程地质条件透明化的思路。其一,静态地质模型通过采集“空-天-地-井-孔”全方位立体化探测模式数据,融合井巷建设基础地质信息,重构地下空间地质特征数字模型,为资源、构造、井巷等静态因素评价、浏览、计算等提供基础。其二,通过动态地质模型获取掘采工程扰动效应影响下,原生静态地下空间地质条件发生变形与破坏,由此而引起的应力应变场、地质地球物理场、渗流场、温度场、浓度场等状态发生改变的参量特征;以及工程动力学作用下,生产环境周边岩层的离层、裂隙、垮落、围岩失稳、底臌、冲击地压显现、应力集中与释放、煤与瓦斯涌突、突水溃沙等多种灾害源现象的动态地质信息变化量值。特别针对动态地质模型发生与发展过程中状态及参数的显现不同,通过进一步加强多介质、多相、多态、多维、多源数据的有机融合,进行多参数联合反演,搭建井上下复合源信息监控平台,构建耦合信息、致灾因素、灾害前兆等多
2022-02-16 11:23:21 5.37MB 透明地质条件 重构 精准开采 智慧矿井
1
针对煤矿井下监控现场防尘、防潮、防水、电网波动大、传输距离远及经常增加监测点的要求,对CAN总线接口技术进行研究,设计出以AT89S52为控制核心,基于CAN总线的矿井内温湿度监测系统。详细分析了SJA1000内置CAN控制器的工作原理,设计了CAN总线接口电路。在温湿度测量中,采用SHT11作为温湿度传感器,实现了温度0~120℃和相对湿度0~100%的高精度测量。试验结果表明,该监测系统性能稳定,工作可靠,具有高精度、示值稳定性好等特点。
2022-02-15 21:59:25 270KB 行业研究
1
(新标准)矿井通风能力核定.docx
2022-02-15 14:09:49 337KB word文档 管理类文档
煤矿安全质量标准化矿井工作方案借鉴.pdf
2022-02-14 10:04:30 75KB 网络文档
运用Chemkin程序和GRI-Mech 3.0机理,对入射激波诱导下矿井乏风瓦斯点火延迟时间进行数值模拟.首先,根据乏风瓦斯燃烧基元反应敏感性分析,定义CH3峰值出现的时刻为乏风瓦斯的点火延迟时间,然后分别研究瓦斯体积分数、入射激波速度、乏风瓦斯初始温度、初始压力对点火延迟时间的影响.研究结果表明,入射激波速度、乏风瓦斯初始温度、初始压力的增加均会使燃烧温度增加,CH3峰值增加,点火延迟时间缩短,其中入射激波速度的增加缩短点火延迟时间的效果最为显著,乏风瓦斯体积分数变化(0.1%~1.0%)对点火延迟时间的影响较小.
1
矿井通风与安全-习题及答案.pdf
2022-02-07 09:02:54 380KB 安全 矿井通风与安全