MATLAB实现DBO-BP多输入单输出回归预测(完整源码和数据) 螳螂算法优化BP神经网络多输入回归预测,数据为多输入回归数据,输入2个特征,输出1个变量,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
语言:MATLAB—交通标志识别(选颜色定位,分割,bp神经网络方法识别,可模板,sift,svm等方法识别)
2023-01-03 23:29:16 1.37MB 交通标志识别 交通标志定位
1
BP神经网络的数据分类-语音特征信号分类源程序-*BP神经网络的数据分类-语音特征信号分类源程序*-*BP神经网络的数据分类-语音特征信号分类源程序*
2023-01-02 17:27:53 368KB BP神经网络
1
矿山瓦斯突出与爆炸事故的预测预报是当前我国煤矿安全生产中急待解决的问题之一。引入BP神经网络的拟牛顿(Newton)优化算法,在保留空间实体相关和多种分布并存的前提下,讨论了建立拟牛顿优化算法BP神经网络瓦斯灾害预测预报模型的数学模型设计、网络结构设计和程序设计3个部分,并以济宁二号井为实例进行了测试。结果表明:该模型稳定、快速、预测精度高,能够较好地模拟矿山瓦斯突出与爆炸事故特征,对瓦斯灾害作出较准确的预测。
2022-12-31 21:45:53 386KB 行业研究
1
在目前的 Simulink 模块中没有找到关于 BP 神经网络的封装,所以说单独使用不能完美的进行设计仿真,这时用到了S函数来连接MATLAB与Simulink的程序,神经网络学习算法于此构造,学习速率为 xite,惯性因子为 alfa,隐含层加权系数为 wi,输出层加权系数为 wo,完成仿真前首先要初始化,仿真开始后首先建立一个传递函数,然后对其进行离散化提取出分子和分母,三个输出分别对应 PID 参数中的Kp、Ki、Kd,然后是对参数的不断更新,该环节反复进行,每次数据方向传播回来后与之前的误差对比,在所有的运行过程中每个神经元的权值和阀值都会自动调整,直到取得最佳解或者达到指定次数才会停止更新。
2022-12-31 09:33:08 15KB 神经网络 算法 文档资料 人工智能
1
钢板表面质量决定钢板的抗腐蚀性、抗磨性和疲劳强度等使用性能,决定相关产品的安全性能。目前还没有一种算法可很好的解决钢板表面缺陷分类问题。应用BP神经网络算法识别钢板表面缺陷,并采用高阶扰动理论解决BP神经网络算法固有的缺点,如学习速度慢、易陷入局部极值等。最后通过实验验证了算法的有效性,钢板缺陷识别率达到83%。
2022-12-30 17:00:17 201KB 自然科学 论文
1
针对传统税收预测模型精度较低的问题,提出一种将Adaboost算法和BP神经网络相结合进行税收预测的方法。该方法首先对历年税收数据进行预处理并初始化测试数据分布权值;然后初始化BP神经网络权值和阈值,并将BP神经网络作为弱预测器对税收数据进行反复训练和调整权值;最后使用Adaboost算法将得到的多个BP神经网络弱预测器组成新的强预测器并进行预测。通过对我国1990--2010年税收数据进行仿真实验,结果表明该方法相比传统BP网络预测,平均误差相对值从0.50%减少到0.18%,有效地降低了单个BP陷入局
2022-12-29 15:51:15 313KB 工程技术 论文
1
建筑节能是当今城市建设和社会发展的前沿和研究热点,对建筑的能耗现状进行综合分析与评估是进行节能改造或节能设计的前提和基础,而建立反映能耗变化的预测模型是从宏观尺度上分析认识建筑能耗变化与发展特性、为公共建筑节能工作提供决策依据的有效途径和重要手段。研究针对常规BP网络算法收敛速度慢、易陷入局部最小点的缺点,采用了具有较快收敛速度及稳定性的LM算法进行预测,构造了基于BP神经网络的建筑物用电量预测模型。以某市公共建筑原始用电能耗统计数据作为样本,并采用MATLAB对预测模型进行了仿真预测。结果显示:误差在允
2022-12-27 20:27:38 694KB 工程技术 论文
1
matlab BP神经网络人脸识别系统
2022-12-26 19:31:30 6.44MB matlab BP神经网络 人工智能
1
研究的是手写字符的识别系统,首先介绍了现阶段光学识别技术(ORC)的发展情况,并对其在发展过程中存在的各种难题进行了分析和总结。然后对神经网络的国内外研究现状和主要特点进行详细的分析说明,并对神经网络模型进行了简要的介绍。在建立字符识别系统过程中首先需要制作手写字符的图片作为字符识别系统的输入信息,运用MATLAB作为系统实验的处理工具,建立基本函数。对字符图片进行归一化处理获取字符图片的数字的特征值,运用BP神经网络对输入的各个手写字符的特征值采进行训练,通过训练后的神经网络系统后对各手写字符图片进行识别。在实验环节采用 MATLAB 的读取手写的字符图像信息,由于提取的图像信息没有经过归一化处理所以无法获取其字符图像的特征信息。通过采用自定义的归一化算法对读取的字符图像归一化的预处理提取数字特征。将提取的数字特征信息作为神经网络的输入,对神经网络进行训练获取神经网络的输出结果。
2022-12-26 19:31:12 1.01MB BP神经网络 手写体数字识别 MATLAB
1