CSDN海神之光上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函数:Main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除Main.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 智能优化算法优化随机森林RF分类预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化RF 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化RF 4.4.3 灰狼算法GWO/狼群算法WPA优化RF 4.4.4 鲸鱼算法WOA/麻雀算法SSA优化RF 4.4.5 萤火虫算法FA/差分算法DE优化RF 4.4.6 其他优化算法优化RF
2024-03-20 09:46:30 187KB matlab 随机森林
如题,本资源包含了完整的训练代码和训练数据。更多详情可参考博客一:https://qianlingjun.blog.csdn.net/article/details/125051953 博客二:https://qianlingjun.blog.csdn.net/article/details/125064999 数据集部分是LIDC-IDRI的CT结节的数据集,其中供参考的是分叶征的完整数据集(如果需要良恶性、毛刺征等等,可以私信我补充)。代码部分还包括了数据生成的代码,这部分可以帮助你后续产生自己的训练数据集。
2024-03-16 16:54:44 298.1MB pytorch pytorch 数据集
1
keras进行验证码识别的训练样本集和测试样本集,每个验证码的名称即为验证码显示的字符
2024-03-15 10:20:36 7.79MB keras 人工智能 深度学习 python
1
 本项目是一个基于安卓的古诗词阅读源码,这个是单机版所有数据都直接储存在本地,可以按照作者或者朝代查找作者然后查看该作者的所有诗词作品,也可以按照作品的类型进行查找,类型被分成了古诗、古词、古曲、文言文、辞赋等。项目有比较详细的中文注释,感兴趣的朋友可以下载研究一下。 
2024-03-12 12:41:10 3.02MB Android源代码 安卓应用源码
1
这个数据集包含了从地面拍摄的云的图像。 文件包含了训练集和测试集,数据包含了11种类别的2543张云层图片。
2024-03-12 09:12:21 93.17MB 数据集
1
这些文档主要介绍了深度学习模型中的一些关键组件,包括自注意力机制、前馈神经网络和Transformer模块等。它们适用于需要深入理解这些概念以构建自己的神经网络模型的读者,包括机器学习研究人员、深度学习工程师和学生等。 主要实现了基于Vision Transformer(ViT)的图像分类模型,并进行了相应的改进。首先,通过使用Rearrage层对输入的图像进行重新排列,将其转换为符合Transformer模型输入要求的格式。然后,通过定义PreNorm层、FeedForward层和Attention层等模块,构建了基于ViT的CNN模型(ViTCNN)。其中,PreNorm层用于对输入进行归一化处理,FeedForward层用于进行前向传播计算,Attention层则用于实现注意力机制。在计算过程中,通过使用sin-cos位置编码(posembsincos)方法,将图像的位置信息转化为可学习的参数,提高了模型的泛化能力。最后,通过GRU层对特征进行进一步的处理和融合,得到最终的分类结果。 该模型具有较好的精度和效率,可广泛应用于图像分类任务。但是,该模型仍存在一些可以改进的地方,例如
2024-03-11 20:23:29 3.37MB 深度学习 人工智能 图像分类
1
自然语言处理+Transformer+文本分类+情感分析 自然语言处理+YOLO+图像描述+图文生成 使用Transformer模型进行文本分类和情感分析的教程,介绍了Transformer模型的基本原理、结构和实现方法,以及如何使用Hugging Face的Transformers库和PyTorch框架来构建、训练和评估文本分类模型。本教程适合想要学习和应用Transformer模型的自然语言处理爱好者和开发者,可以帮助他们掌握Transformer模型的基本知识和技巧,以及如何利用Transformer模型进行文本分类和情感分析等任务。 使用Transformer模型进行文本分类和情感分析的教程,介绍了Transformer模型的基本原理、结构和实现方法,以及如何使用Hugging Face的Transformers库和PyTorch框架来构建、训练和评估文本分类模型。本教程适合想要学习和应用Transformer模型的自然语言处理爱好者和开发者,可以帮助他们掌握Transformer模型的基本知识和技巧,以及如何利用Transformer模型进行文本分类和情感分析等任务。使用Tr
2024-03-11 15:36:15 636B pytorch pytorch 自然语言处理 transformer
1
双冠家园宝贝类目查询工具 淘宝类目一键查询软件 天猫分类查询
2024-03-11 12:49:49 464KB 淘宝类目查询
1
haarcascade_frontalface_alt2.xml、haarcascade_eye.xml、haarcascade_fullbody.xml、haarcascade_smile.xml等各种opencv分类器。
2024-03-11 10:07:46 1.34MB opencv haar
1
资源包含102种花卉的分类图片数据集,共8189张图片,可用于深度学习模型的训练。
2024-03-09 12:26:48 329.24MB 数据集 深度学习
1