三种加密方式 (1)链路加密 (2)节点对节点加密 (3)端对端加密
2025-04-27 19:09:38 263KB
1
【JAVA语言概述】 Java是一种跨平台的面向对象的编程语言,由Sun Microsystems开发,现由Oracle公司维护。它的设计目标是实现“一次编写,到处运行”,通过Java虚拟机(JVM)确保代码在不同操作系统上都能运行。Java语言的特点包括简洁性、面向对象、健壮性、安全性、高效性和可移植性。 【基本语法】 Java的基本语法包括变量声明、数据类型(包括基本数据类型和引用数据类型)、运算符、控制流(如if语句、for循环、while循环)、异常处理和方法定义等。其中,变量声明时需要指定数据类型,例如`int num = 10;`,数据类型分为整型、浮点型、字符型、布尔型和引用类型。 【面向对象】 面向对象是Java的核心特性,主要包括类、对象、属性、方法、构造器、代码块和内部类。类是对象的模板,它包含属性(成员变量)和方法。属性是对象的状态,方法是对象的行为。构造器用于初始化新创建的对象,代码块可以是实例初始化块或静态初始化块,内部类可以是成员内部类、局部内部类、匿名内部类等。 【封装、继承和多态】 封装是将数据和操作数据的方法绑定在一起,保护数据不被随意访问。继承允许一个类(子类)继承另一个类(父类)的属性和方法,从而实现代码复用和扩展。多态则是指一个接口可以有多种不同的实现,提高了程序的灵活性,例如方法的重写(Override)和重载(Overload)。 【形参与实参】 形参是方法定义时声明的参数,而实参是调用方法时传入的实际值。Java采用值传递机制,对于基本数据类型,传递的是实际值;对于引用数据类型,传递的是对象的引用地址。 【属性(成员变量)与局部变量】 属性是类的成员,可以在类的范围内定义,有默认初始化值,可以使用权限修饰符控制访问权限。局部变量只在方法、构造器、代码块内部有效,没有默认初始化值,使用前必须显式赋值。 【权限修饰符】 Java有四种权限修饰符:private(私有)、default(包访问权限)、protected(受保护)和public(公共)。它们决定了类、方法、属性的可见性,影响了代码的封装性和耦合度。 【构造器】 构造器用于初始化新对象,如果没有显式定义,Java会自动生成一个无参构造器。构造器可以重载,即在同一个类中可以定义多个构造器,它们的参数列表不同。 【this关键字】 this关键字代表当前对象的引用,可以用来区分成员变量和方法形参之间的冲突,调用成员变量、方法和构造器。 【包(package)】 包是组织Java类和接口的一种方式,通过package关键字声明,如`package com.example.myapp;`。包名反映了文件的目录结构,可以避免名称冲突,并有助于代码的管理。 【MVC设计模式】 MVC(Model-View-Controller)模式是软件设计中常用的一种架构模式,将应用程序分为模型层、视图层和控制器层,分别负责数据处理、用户界面展示和业务逻辑控制。 【import关键字】 import用于引入需要的类或接口,可以使用全限定名或使用import导入整个包。import static则用于导入类或接口中的静态成员。 【继承性】 继承是面向对象的一个重要特性,一个类可以从另一个类继承属性和方法,使得代码复用和扩展更加便捷。继承的格式是`class ChildClass extends ParentClass {}`。 总结: “尚硅谷JAVA基础笔记”涵盖了Java语言的基础知识,包括语言概述、基本语法、面向对象概念、封装、继承和多态,以及一些关键概念如形参与实参、属性与局部变量、构造器、this关键字、包和MVC设计模式的使用。这些知识点是学习Java编程的基础,对于理解和编写Java代码至关重要。
2025-04-27 08:37:24 2.42MB JAVA教程 java笔记
1
内容概要:本文档包含了2024年信息素养大赛C++算法创意实践挑战赛小学组初赛的真题。题目涵盖了单选题和判断题两种形式,涉及C++的基础语法、运算符、条件语句、循环结构以及简单的算法逻辑。每道题目旨在考察参赛学生对C++语言的理解和应用能力,如变量定义、布尔表达式、输入输出操作、数学运算等。 适合人群:小学阶段的学生,尤其是对编程感兴趣并有一定C++基础知识的学习者。 使用场景及目标:本套试题适用于准备参加信息素养大赛的小学生进行自我测试和练习,帮助他们巩固所学知识,提高解题能力和编程思维。 其他说明:文档不仅提供了具体的题目,还附带了一些背景信息,有助于考生更好地理解和解答问题。同时,对于教师来说,这份资料也是教学过程中非常有价值的参考资料。
2025-04-26 14:43:04 337KB 编程竞赛 基础语法
1
DirectX 3D HLSL(High-Level Shader Language)是微软为DirectX图形接口提供的一种着色语言,用于编写图形处理单元(GPU)上的计算代码,包括顶点着色器、像素着色器、几何着色器等。这个"DirectX3DHLSL高级实例精讲16-21章源码"涵盖了多个关键领域的实践教程,下面是这些章节的主要知识点: 1. **16_特效**:这部分通常会包含各种视觉效果的实现,如粒子系统、雾化、光照效果、后处理特效等。粒子系统常用于模拟火焰、烟雾、雨滴等自然现象;光照效果涉及光照模型,如Phong模型,以及环境光、漫反射、镜面反射等;后处理特效可能包括模糊、抗锯齿、色调映射等。 2. **17_杂项例子**:这类章节往往涵盖多种主题,可能包括纹理操作、动画系统、模型加载、碰撞检测等。纹理操作涉及纹理贴图、纹理坐标映射;动画系统则关注骨骼动画和时间同步;模型加载可能介绍如何解析3D模型文件格式,如OBJ或FBX;碰撞检测是游戏和实时应用中的重要部分,包括轴对齐包围盒(AABB)、球体与球体、多边形碰撞等。 3. **18_综合实例**:这通常是一个综合性的项目,结合前面学习的知识,如创建一个完整的3D场景,可能涉及到地形渲染、天空盒、水波纹效果、动态阴影等。这样的实例有助于将理论知识应用到实践中,提升整体理解和应用能力。 4. **19_调试和优化**:这部分内容将教你如何利用工具如Visual Studio的图形诊断、 PIX进行图形调试,找出渲染问题。同时,会讨论性能优化技巧,如减少冗余计算、提高内存管理效率、利用多线程等,以确保程序在复杂场景下仍能流畅运行。 5. **20_DX11入门**:DirectX 11是DirectX的一个重要版本,引入了新的特性,如多线程渲染、计算着色器、纹理数组等。这部分可能会讲解如何设置DirectX 11环境,创建设备和上下文,以及如何使用新特性来提升图形处理性能。 6. **21_附录**:附录通常包含补充资料,如参考资源、常见问题解答、API函数详解等,对于深入理解DirectX 3D HLSL编程大有裨益。 通过学习这些章节的源码,你可以深入理解Direct3D HLSL的高级概念和实践应用,从而提高你的3D图形编程技能,不仅能够设计出更丰富的视觉效果,还能掌握优化技巧,为高性能的3D应用程序打下坚实基础。
2025-04-26 11:34:05 112.87MB Direct3D HLSL
1
DirectX 3D HLSL(High-Level Shader Language)是一种用于编写图形硬件着色器的语言,由微软开发,常用于游戏开发和其他实时图形渲染应用。在DirectX 3D HLSL高级实例精讲的11-15章中,涵盖了多个核心主题,包括骨骼动画、粒子系统、阴影技术、物理模拟以及变形、刚体和纹理动画。这些章节深入讲解了如何利用HLSL提升3D图形的视觉效果和交互性。 1. **骨骼动画**:在12_骨骼动画部分,学习者将了解到如何为3D模型实现复杂的角色动画。骨骼动画通过将模型的几何体与虚拟骨骼关联,通过改变骨骼的位置和旋转来驱动模型的运动。HLSL在这里的角色是计算每个顶点在不同时间的最终位置,基于骨骼的变换矩阵。这一过程涉及骨骼权重分配、骨架蒙皮和插值算法,如Skeletal Interpolation(线性插值或更高级的样条插值)。 2. **粒子系统**:14_粒子章节主要关注创建动态的视觉效果,如火焰、烟雾、水滴等。粒子系统通过大量简单的个体(粒子)集合模拟复杂现象。HLSL被用来控制粒子的生命周期、发射、速度、颜色变化和交互,以实现逼真的视觉效果。通常,GPU并行处理大量粒子,大大提升了性能。 3. **阴影技术**:11_阴影章节深入探讨了阴影的生成和优化方法,如阴影贴图、PCF(Percentage-Closer Filtering)和VSM(Variance Shadow Maps)。HLSL在计算光照和阴影投射时起关键作用,使得场景中的物体显得更加立体和真实。 4. **物理模拟入门**:15_物理模拟入门章节涵盖了基础的物理概念,如重力、碰撞检测和响应。在游戏和互动应用中,物理模拟使对象的行为更符合现实世界。HLSL可以辅助GPU进行快速的碰撞检测和物理效果计算,如刚体动力学和软体模拟。 5. **变形、刚体和纹理动画**:13_这部分内容可能涉及到如何通过HLSL改变模型形状,实现表面扭曲、形变效果,以及刚体(不考虑变形的实体)和纹理动画。刚体模拟涉及到物体的移动和旋转,而纹理动画则可以通过时间改变纹理坐标来实现动画效果,比如动画纹理或滚动贴图。 以上五个主题展示了DirectX 3D HLSL在3D图形编程中的广泛应用。通过学习和实践这些实例,开发者能够掌握创建高级3D图形和交互式体验的关键技能。同时,这些技术也是游戏开发、虚拟现实和科学可视化等领域不可或缺的部分。
2025-04-26 11:31:45 64.39MB Direct3D HLSL
1
DirectX 3D HLSL(High-Level Shader Language)是一种用于编写图形硬件着色器的语言,由微软开发,常用于游戏开发、3D图形渲染等领域。HLSL是DirectX的重要组成部分,它允许开发者利用GPU的强大计算能力来实现复杂的图形效果。本资料集包含了06至10章的高级实例源码,尽管由于文件大小限制被分成了几个部分,但我们可以从这些章节的标题中提炼出关键知识点: 1. **06_纹理**:这一章可能涵盖了纹理映射的概念,这是3D图形中的基础技术。它涉及到如何将2D图像(纹理)应用到3D模型表面,以增加视觉真实感。可能讨论了纹理坐标、纹理坐标空间转换、纹理采样器以及各种纹理类型,如颜色纹理、法线贴图、环境贴图等。 2. **07_缓冲区**:缓冲区在DirectX中用于存储顶点数据、索引数据、常量数据等。这一章可能涉及到了几种不同的缓冲区类型,如顶点缓冲区(Vertex Buffer)、索引缓冲区(Index Buffer)和常量缓冲区(Constant Buffer),以及如何创建、更新和绑定它们。同时,可能会讲解如何使用缓冲区提高渲染效率。 3. **08_VertexShader深入**:顶点着色器是图形管线中的第一步,负责处理输入的顶点数据。这部分可能深入探讨了顶点变换(包括世界坐标、视图坐标和投影坐标)、光照模型、纹理坐标变换以及其他高级技术,如骨骼动画或皮肤ning。 4. **09_PixelShaders深入**:像素着色器是图形管线的后处理阶段,负责为每个像素生成最终的颜色。这部分可能详细讲解了像素操作,包括混合模式、高级光照效果、后期处理特效(如雾化、抗锯齿、色调映射)以及如何实现自定义的像素级效果。 5. **10_渲染到纹理**:这是一种技术,允许将渲染结果存储到纹理中,然后在后续的渲染步骤中使用。这在实现反射、折射、环境光遮蔽等复杂效果时非常有用。这部分可能包含如何设置渲染目标、多重渲染目标(MRT)以及如何从渲染到纹理的结果中读取数据。 通过这些源码实例,开发者可以深入理解Direct3D HLSL的实际应用,学习如何高效地利用GPU进行计算,并实现各种视觉特效。每个章节的源码都是一个宝贵的实践教程,可以帮助学习者提升在3D图形编程领域的技能。
2025-04-26 11:28:27 116.37MB Direct3D HLSL
1
【算法设计与分析】是计算机科学中的核心课程,主要探讨如何有效地解决问题并设计高效计算过程。这门课程由中国大学MOOC提供,由北京航空航天大学(北航)的专家讲授,旨在帮助学生理解和掌握基础算法及其分析方法。通过学习这门课程,学生将能够运用所学知识解决实际问题,提升编程能力,以及对复杂度理论有深入的理解。 课程内容可能涵盖以下几个方面: 1. **排序算法**:包括经典的冒泡排序、插入排序、选择排序、快速排序、归并排序和堆排序等,以及更高效的算法如计数排序、桶排序和基数排序。这些算法的比较和分析有助于理解不同情况下的最佳选择。 2. **搜索算法**:如深度优先搜索(DFS)、广度优先搜索(BFS)、Dijkstra算法和Floyd-Warshall算法,用于解决图论问题和最短路径寻找。 3. **动态规划**:这是解决多阶段决策问题的有效方法,例如斐波那契序列、背包问题、最长公共子序列和最短编辑距离等。 4. **贪心算法**:在每一步都选择局部最优解,以期达到全局最优。典型应用如霍夫曼编码和Prim或Kruskal的最小生成树算法。 5. **分治策略**:将大问题分解为小问题,然后递归地解决。典型的例子有归并排序、快速排序和大整数乘法。 6. **回溯法与分支限界**:用于在大规模搜索空间中找到解决方案,如八皇后问题和N皇后问题。 7. **图论与网络流**:包括最大流问题、最小割问题,以及 Ford-Fulkerson 和 Edmonds-Karp 算法。 8. **数据结构**:如链表、队列、栈、树(二叉树、平衡树如AVL和红黑树)、哈希表等,它们是算法的基础。 9. **复杂度理论**:介绍时间复杂度和空间复杂度的概念,以及P类和NP类问题,理解算法效率的重要性。 课程链接提供的博客可能包含课程的代码实现,这对于理解算法的实际操作和优化至关重要。实践是检验和加深理论知识的最好方式。学生可以通过这些代码实现来锻炼编程技能,同时理解算法在真实场景中的表现。 "中国大学MOOC-算法设计与分析"是一门全面介绍算法和分析技巧的课程,对于计算机科学专业的学生以及对算法感兴趣的任何人都极具价值。通过学习,不仅可以掌握多种算法,还能培养问题解决和分析能力,为未来的学术研究或职业发展奠定坚实基础。
2025-04-26 11:14:57 30.82MB 算法设计与分析 基础算法
1
根据提供的信息,我们可以了解到这是一本关于应用数学基础的学习指导书籍,主要面向工科硕士研究生。本书由天津大学出版社出版,作者为曾绍标。接下来,我们将深入探讨这本书可能涵盖的一些核心知识点,并对这些知识点进行详细的阐述。 ### 应用数学基础知识 #### 一、线性代数 线性代数是工程科学中极为重要的一个分支,它在信号处理、图像处理、控制理论等多个领域有着广泛的应用。本章节将介绍向量空间、矩阵运算、特征值与特征向量等基本概念及其应用方法。 #### 二、概率论与数理统计 概率论与数理统计为理解和分析随机现象提供了理论基础。本章节将涵盖概率的基本概念、随机变量及其分布、大数定律、中心极限定理等内容,并探讨如何利用这些理论来解决实际问题。 #### 三、数值计算方法 数值计算方法是现代科学技术不可或缺的一部分。本章节将涉及插值法、数值积分、微分方程数值解法等主题。通过这些方法,可以有效地求解复杂的数学模型。 #### 四、优化理论 优化理论旨在寻找最有效的解决方案。本章节将讲述线性规划、非线性规划、动态规划等多种优化方法及其应用场景,帮助读者掌握构建和求解优化问题的基本技能。 #
2025-04-24 16:10:11 1.73MB 习题解答 工科研究生
1
《基于蚂蚁算法的动态分布式路由算法》 在信息技术领域,路由算法是网络通信中的核心组成部分,它决定了数据在网络中的传输路径。随着互联网的飞速发展和分布式系统的普及,高效的路由算法变得至关重要。本文将深入探讨一种借鉴自然界蚂蚁行为的优化算法——蚂蚁算法,并将其应用于动态分布式路由中。 蚂蚁算法(Ant Colony Optimization, ACO)是一种模拟生物进化过程的全局优化算法,最初由Marco Dorigo等人提出。该算法灵感来源于蚂蚁寻找食物过程中释放信息素的行为,通过模拟这种机制来解决复杂的优化问题。在分布式路由中,我们可以将网络节点视为蚂蚁,每条可能的路径则相当于蚂蚁寻找食物的路线。蚂蚁们根据信息素浓度选择路径,同时在走过路径时更新信息素,形成一个动态的优化过程。 动态分布式路由算法的目标是在不断变化的网络环境中,找到最佳的数据传输路径。传统的静态路由算法难以适应网络状态的快速变化,而基于蚂蚁算法的动态路由策略则能够实时响应网络状况,自动调整路由表,提高数据传输的效率和可靠性。 在蚂蚁算法的具体实现中,每只“蚂蚁”代表一个数据包,它们在节点间随机游走,选择下一跳节点的概率受当前路径上的信息素浓度影响。信息素浓度高的路径更有可能被选择,从而形成了正反馈机制。同时,算法还包括蒸发机制,即随着时间的推移,信息素会逐渐减少,防止旧路径过度固化,保证了算法的探索能力。 在分布式系统中,每个节点都执行蚂蚁算法,维护局部路由表,并通过通信交换信息素信息。这样,整个网络形成一个自组织、自适应的路由结构。蚂蚁算法的并行性和分布式特性使其在处理大规模网络问题时展现出高效性能。 此外,蚂蚁算法还可以结合其他优化技术,如遗传算法、粒子群优化等,进一步提升路由性能。例如,可以引入变异操作来避免算法陷入局部最优,或者利用粒子群中的个体经验和全局经验来改进信息素更新规则。 基于蚂蚁算法的动态分布式路由算法充分利用生物界中的智能行为,为网络路由提供了一种新颖且有效的解决方案。通过模拟自然界的优化机制,这种算法能够应对网络环境的复杂性和动态性,提高网络资源的利用率,降低数据传输延迟,确保服务质量和稳定性。尽管存在一定的计算复杂性,但随着硬件性能的不断提升和算法的持续优化,这种算法在未来的分布式网络中具有广阔的应用前景。
2025-04-24 14:55:37 509KB 基础知识
1
nvidia英伟达-认证加速计算基础 —— CUDA C/C++代码
2025-04-24 01:23:24 4KB cuda nvidia
1