基于matlab的svm的留一法代码实现AROMS-机器学习 机器学习的自动表示优化和模型选择框架-AROMS-Framework 这是AROMS-Framework的Matlab源代码的发布。 这是我在德国杜伊斯堡-埃森大学的智能系统小组(Intelligente Systeme)的博士项目的主要贡献。 我的博士学位论文题目为“机器学习的自动表示优化和模型选择框架”在线发表: 英博士Dipl.-Inf。 FabianBürger,2016年7月4日 与我联系的一种方法是:fabuerger | at | gmail | dot | com ==应用领域和方法== AROMS框架的应用领域是针对监督分类问题的数据处理管道的优化。 管道非常适合每项学习任务,由四个连续处理数据的元素组成: 特征选择元素选择有用的特征子集 功能预处理元素应用数据预处理方法,例如重新缩放,L2归一化或预白化 特征变换元素从流形学习和表示学习领域应用合适的特征变换,例如主成分分析(PCA),自动编码器或LLE(局部线性嵌入) 分类器元素包含分类器,并提供了多种选择,例如内核支持向量机(SVM),随机森林或人工神
2023-02-06 11:01:51 2.29MB 系统开源
1
本程序有数据集,有程序代码。本程序是将手写数字图像作为特征输入SVM,最终得到10分类,准确率约90%
2023-01-30 12:53:58 93KB SVM多分类算法
1
其中关于PSO部分的书写,已经进行了封装,可以进行通用,用于其他模型的优化。该资源实例主要用于优化支持向量机回归算法中的惩罚参数C、损失函数epsilon、核系数gamma进行调参
1
[基于MATLAB]植物叶片虫害检测系统(方法svm,颜色,可以识别具体是什么虫子等,带界面GUI和文稿万字).zip
1
本文提出了一种肠道疼痛是一种确定的污染,为此,需要简短总结其控制性最终目标。 使用改进的工具来查看混乱情况。 如果关闭基地坚持完成,然后由疼痛可变成动态罕见状态。 图片准备检查用于查看吉姆萨(Giemsa)变色边缘血液测试的微薄传播中的疟疾发热寄生虫,恶性疟原虫种的亲密关系。 一些图片管理的估计被用于对弱血迹传播的疟疾发烧进行自动评估,但是寄生虫血症的程度可靠地不像手动检查那样无可争议。 拟议的系统通过使用图片准备图形来清洁人的滑倒,同时看到疟疾发热寄生虫的亲密关系。 这是通过评估两种观察肠道紊乱寄生虫的策略来创建的。 第一个结构依赖于划分; 第二种用途是使用最少分区分类器进行提取。 肠道污染区的结构提高了人们的可感染性,个性,建设性猜想和相反的需求。
2023-01-11 18:25:58 463KB Image Segmentation SVM Classifier
1
MATLAB平台:交通标志识别(选颜色定位,分割,bp神经网络方法识别,可模板,sift,svm等方法识别)
2023-01-10 19:11:13 1.37MB 交通标志识别 颜色定位
1
matlab-最小二成支持向量机(LSSVM)手册,26页
2023-01-10 15:40:39 1.21MB matlab svm lssvm 预测
1
基于python平台的SVM垃圾邮件识别
2023-01-07 15:31:18 4KB 基于SVM的垃圾邮件识别
1
针对滚动轴承极易损伤,振动信号表现出非线性、非平稳性等特点,提出一种基于局部特征尺度分解(LCD)和改进支持向量机(SVM)的滚动轴承故障诊断算法。首先对采集到的轴承振动信号进行LCD,分解得到一系列内禀尺度分量(ISC),通过与经验模态分解(EMD)对比研究,证明了LCD方法的优越性;然后计算所有分量的能量熵值,提取出轴承信号的敏感特征集,输入到经过遗传算法(GA)进行参数优选后的SVM识别模型进行轴承状态的诊断识别。实验研究表明,基于LCD和改进SVM的轴承诊断算法能较好地提取出轴承故障特征信息,对4种轴承状态的识别率高达90%,是一种较为有效的轴承故障诊断方法。
2023-01-07 10:48:30 392KB 滚动轴承
1
语言:MATLAB—交通标志识别(选颜色定位,分割,bp神经网络方法识别,可模板,sift,svm等方法识别)
2023-01-03 23:29:16 1.37MB 交通标志识别 交通标志定位
1