本篇论文将研究如何使用Python和Django框架,结合sqlite数据库实现一个电子书图书商城网站系统。该系统将包括用户注册、登录、浏览书籍、添加到购物车、下订单等核心功能。 首先,我们需要进行系统需求分析,确定网站的核心功能和用户需求。在这个阶段,我们需要对网站的功能和业务进行详细分析,确定网站的目标用户和核心功能。 其次,我们需要设计网站的数据库架构,包括确定数据表、关系、索引等。在这个阶段,我们需要根据系统需求分析的结果,设计合适的数据模型,以支持网站的核心功能。 接下来,我们需要进行网站的前端设计和开发。在这个阶段,我们需要使用HTML、CSS、JavaScript等前端技术,构建一个美观、易用的用户界面。同时,我们还需要使用Bootstrap等框架,提高网站的响应性和可访问性。 然后,我们需要进行网站的后台设计和开发。在这个阶段,我们需要使用Python和Django框架,构建网站的后台管理系统,以支持网站的各项核心功能。同时,我们还需要使用sqlite数据库,存储和管理网站的数据。 最后,我们需要进行网站的测试和部署。在这个阶段,我们需要对网站进行全面的测试,确保网站的
2024-10-12 11:15:11 5.21MB python django sqlite 电子书城
1
在云技术领域,入门级开发者认证是初学者进入这个行业的重要步骤。这个认证涵盖了多个关键的知识模块,旨在为学习者提供全面的云技术基础知识。以下是各章节的详细内容: 第1章:基础设施和计算能力 本章主要介绍了云计算的基础架构,包括物理硬件、虚拟化技术和云计算服务模型(IaaS、PaaS、SaaS)。学习者将了解如何通过云服务提供商(如AWS、Azure、Google Cloud等)获取计算资源,如虚拟机、容器和函数计算。同时,会涉及负载均衡和扩展性设计,以及计算成本优化策略。 第2章:存储和网络 这一章深入探讨了云环境中的存储解决方案,如对象存储、块存储和文件存储,以及它们在不同场景下的应用。此外,还将介绍云网络的基本概念,如VPC(Virtual Private Cloud)、子网、路由表和安全组,以及如何实现跨区域的数据传输和连接。 第3章:安全和部署 在本章,学习者将掌握云环境中的安全原则和最佳实践,包括身份和访问管理(IAM)、加密技术、防火墙规则和安全组配置。此外,还会讨论持续集成和持续部署(CI/CD)的重要性,学习如何使用自动化工具(如Jenkins、GitLab CI/CD)进行高效且安全的部署。 第4章:数据库和数据治理 本章专注于云数据库服务,包括关系型数据库(如Amazon RDS、Azure SQL Database)、非关系型数据库(如MongoDB、Cassandra)以及数据湖和数据仓库。此外,还将讲解数据治理的重要性,如数据隐私、合规性和数据生命周期管理。 第5章:分布式和弹性 学习者将学习分布式系统的基本概念,如CAP定理、微服务架构以及如何通过负载均衡和弹性伸缩实现高可用性。本章也会涉及无服务器计算(Serverless)的概念,以及如何利用这些技术构建可扩展的应用程序。 第6章:云原生和转型发展 这一章关注云原生开发模式,如容器化(Docker)、容器编排(Kubernetes)和DevOps文化。学习者将了解如何通过云原生技术实现敏捷开发、快速迭代和更高效的资源利用。同时,会讨论企业向云的转型策略和挑战。 第7章:考试大纲及考试样题 本章提供考试大纲,帮助学习者明确考试的重点和结构。通过模拟试题,学习者可以检验自己的理解程度,并了解如何准备实际的认证考试。 这个入门级开发者认证课程覆盖了云技术的基础到进阶内容,旨在培养能够设计、实施和管理云解决方案的专业人才。学习这些知识点,不仅有助于通过认证考试,更能为实际的云项目工作打下坚实基础。
2024-10-11 19:29:05 5.14MB 网络 网络 分布式
1
IBM HR员工减员 数据取自此处要解决的主要业务问题是如何创建系统以帮助大公司通过了解哪个员工可能离职来控制其减员,从而为他/她提供一些激励措施。留下来。 如何导航? 注意: 3X项目仅使用Python 3.X和Tableau 10.0及更高版本进行分析 PPT-包含业务问题和转换为DS问题 Tableau-EDA洞察 功能选择 各种分类模型 最终PPT-解释 报告 安装 $ pip install imblearn # For Smote 问题陈述 我们的客户是ABC一家领先的公司,在该领域表现良好。 最近,它的员工流失率急剧上升。 在过去的一年中,员工流失率已从14%上升到25%。 我们被要求制定一项战略,以立即解决该问题,以免影响公司的业务发展,并提出长期有效的员工满意度计划。 当前,尚无此类程序。 不能再加薪。 幻灯片在 探索性数据分析 数据是不平衡的,我们有83%的人尚未离
2024-10-11 07:03:26 16.14MB python data-science data random-forest
1
### Python中的range函数详解 #### 一、概述 在Python编程语言中,`range()`函数是一种非常实用且常用的工具,用于生成一系列连续的整数。它广泛应用于循环控制结构中,比如for循环,来实现对特定范围内的数字进行迭代处理。在Python 3中,`range()`函数的行为与Python 2有所不同,这主要体现在返回值类型上。 #### 二、Python 3中range函数的特点 在Python 3中,`range()`函数返回的是一个可迭代对象,而不是列表类型。这意味着直接打印`range()`对象时,并不会显示具体的整数序列,而是显示其对象信息。若需要将`range()`对象转换为列表或元组等数据结构,可以利用`list()`或`tuple()`函数来实现这一目的。 #### 三、range函数的语法及参数说明 ##### 函数语法: ```python range(stop) range(start, stop[, step]) ``` ##### 参数说明: - **start**:计数开始的数值,默认为0。例如`range(5)`等同于`range(0, 5)`。 - **stop**:计数结束的数值,但不包含该值。例如:`range(0, 5)`的结果是`[0, 1, 2, 3, 4]`,不包含5。 - **step**:步长,默认为1。例如`range(0, 5)`等同于`range(0, 5, 1)`。 #### 四、range函数的基本用法示例 ##### 示例1:仅指定开始和结束值 ```python for number in range(1, 6): print(number) ``` **输出结果:** ``` 1 2 3 4 5 ``` 在这个例子中,从1开始到5结束(不包括6),步长默认为1。 ##### 示例2:仅指定结束值 ```python for number in range(6): print(number) ``` **输出结果:** ``` 0 1 2 3 4 5 ``` 这里从0开始到5结束(不包括6),步长同样默认为1。 ##### 示例3:指定开始、结束和步长 ```python for number in range(1, 6, 2): print(number) ``` **输出结果:** ``` 1 3 5 ``` 在这个例子中,从1开始到5结束(不包括6),步长为2。 ##### 示例4:使用负数步长 ```python for number in range(6, 1, -1): print(number) ``` **输出结果:** ``` 6 5 4 3 2 ``` 此例中,从6开始到2结束(不包括1),步长为-1。需要注意的是,如果使用负数作为步长,则开始值必须大于结束值。 #### 五、range函数与其他数据结构的转换 在某些情况下,我们可能需要将`range()`函数生成的整数序列转换为其他的数据结构,如列表或元组,以便进行进一步的处理。 ##### 转换为列表 ```python numbers = list(range(1, 6)) print(numbers) # 输出:[1, 2, 3, 4, 5] ``` ##### 转换为元组 ```python numbers = tuple(range(1, 6)) print(numbers) # 输出:(1, 2, 3, 4, 5) ``` 通过以上示例可以看出,`range()`函数提供了极大的灵活性,能够轻松地生成整数序列,并根据具体需求转换为不同的数据结构。这对于编写高效、简洁的Python代码至关重要。 #### 六、总结 `range()`函数在Python编程中扮演着重要的角色。无论是进行简单的数字计数还是复杂的迭代逻辑设计,掌握`range()`函数的用法都是非常必要的。希望本文能帮助读者更好地理解和应用`range()`函数,在实际开发过程中发挥出更大的价值。
2024-10-10 19:25:25 90KB python
1
学习人工神经网络的很经典的入门教材,希望对大家有帮助
2024-10-10 11:58:52 2.93MB 人工神经网络
1
用于检测机载RGB,高光谱和LIDAR点云中单个树的多传感器基准数据集 树木的个体检测是林业和生态学的中心任务。 很少有论文分析在广泛的地理区域内提出的方法。 NeonTreeEvaluation数据集是在国家生态观测网络(NEON)中22个站点的RGB图像上绘制的一组边界框。 每个站点覆盖不同的森林类型(例如 )。 该数据集是第一个在多种生态系统中具有一致注解的数据集,用于共同注册的RGB,LiDAR和高光谱图像。 评估图像包含在此仓库中的/ evaluation文件夹下。 注释文件(.xml)包含在此仓库中的/ annotations /下 制作人:Ben Weinstein-佛罗里达大学。 如何根据基准进行评估? 我们构建了一个R包,以方便评估并与基准评估数据进行交互。 图像是如何注释的? 每个可见的树都进行了注释,以创建一个包围垂直对象所有部分的边界框。 倒下的树木没有注释。
2024-10-09 21:49:48 2GB Python
1
pytorch进行图像去噪处理的复现练习 DnCNN为经典图像去噪算法,论文地址为:https://ieeexplore.ieee.org/abstract/document/8554135 其网络结构如下: 复现的材料和数据集下载地址见ipynb文件中有详细描述与说明。 训练使用pytorch,平台采用谷歌colab进行训练。 在后续实验过程中发现DnCNN在红外图像非均匀性校正上只能做到对图像的PSNR等图像质量上的提升但无法对于图像非均匀性上有所作用
2024-10-09 18:54:17 1.56MB pytorch pytorch python
1
本资源以新闻网站为例,实现了新闻信息的爬取,目的是分享爬虫的方法。 注意:本信息仅供个人使用,不能用于非法用途,使用本资源造成的法律责任与本资源、本文章及本作者无关。 另:如果有损害利益,请私信,会将资源删除
2024-10-09 16:11:39 2KB python 爬虫
1
python 爬取文本内容并写入json文件-目录内容及页码
2024-10-09 16:09:11 28KB python json
1
在本项目中,我们将探讨如何使用Python爬虫技术获取链家网站上的二手房房价数据,并将这些数据存储到MongoDB数据库中,以便后续进行数据分析。让我们逐一了解涉及的关键知识点。 1. **Python爬虫**:Python是进行网络数据抓取的常用语言,其拥有丰富的库支持,如BeautifulSoup、Scrapy等。在这个项目中,我们可能使用requests库来发送HTTP请求获取网页内容,然后用BeautifulSoup解析HTML结构,提取出房价等相关数据。 2. **链家API或网页解析**:链家网站可能提供API接口,也可能需要通过解析HTML页面来获取数据。如果API可用,直接调用API会更高效;若无API,我们需要解析网页结构,找到包含房价、面积、地理位置等信息的元素。 3. **XPath和CSS选择器**:在解析HTML时,XPath和CSS选择器是定位网页元素的重要工具。XPath用于XML和HTML文档路径导航,而CSS选择器则用于选择HTML元素,两者都可以帮助我们准确地找到目标数据。 4. **数据清洗与预处理**:抓取的数据可能存在缺失值、异常值或格式不一致的问题,需要使用Python的pandas库进行清洗和预处理,确保数据质量。 5. **MongoDB**:MongoDB是一种NoSQL数据库,适合存储非结构化和半结构化数据。在这里,它将用于存储房价数据。Python有PyMongo库用于与MongoDB交互,包括连接数据库、创建集合(类似表)、插入数据、查询数据等操作。 6. **数据存储与结构设计**:在MongoDB中,我们需要设计合适的文档结构(JSON格式)来存储房价信息,如包含房源ID、小区名、价格、面积、所在区域等字段。 7. **数据分析**:抓取并存储数据后,可以使用Python的pandas、numpy、matplotlib等库进行数据分析,例如房价的分布、趋势、区域对比等。数据可视化可以帮助我们更好地理解房价规律。 8. **异常处理与批量爬取**:在爬虫过程中,需要考虑请求超时、反爬虫策略等问题,通过设置重试机制、使用代理IP等方式提高爬取的成功率。同时,为了获取大量数据,我们需要设计合理的爬取策略,避免过于频繁的请求导致IP被封。 9. **文件操作**:在本项目中,我们有一个名为“桂林房屋信息.xlsx”的文件,这可能是爬取前已有的数据样本,或者用于存储爬取结果。pandas可以方便地读写Excel文件,与MongoDB中的数据进行比对或合并。 10. **代码组织与版本控制**:使用Jupyter Notebook(即Untitled.ipynb文件)编写代码,可以方便地混合文本、代码和输出。同时,推荐使用Git进行版本控制,以便追踪代码的修改历史和协同工作。 总结,本项目涵盖了从网络爬虫、数据处理、数据库操作到数据分析的多个环节,是Python在数据科学领域应用的一个典型实例。通过实践,我们可以提升数据获取、存储和分析的能力,更好地理解房地产市场的动态。
2024-10-09 16:08:21 92KB mongodb python 爬虫
1