静止无功补偿器是一种没有旋转部件,快速、平滑可控的动态无功功率补偿装置。通过对电抗器进行调节,可以使整个装置平滑地从发出无功功率改变到吸收无功功率(或反向进行),并且响应快速。本仿真可验证在系统的结点端点压和线路功率的波形在受到短路故障的冲击后仍能恢复到原来的稳定的状态,从而使电力系统继续稳定的运行SVC静止无功补偿器能够对电力网络进行无功补偿,从而维持电力系统的稳定性。
2024-09-16 12:36:52 37KB 静止无功补偿器 电力系统仿真
1
本仿真 通过对升降压斩波电路的仿真研究,分析不同占空比对电路输出波形的影响规律,通过调节占空比的大小改变输出电压波形,可设定脉冲宽度即占空比的值,进行实验对比
2024-09-16 11:34:38 18KB 电力电子 matlab
1
针对三维天空场景仿真中出现的场景实时性和真实性不能满足用户的需求等问题,提出了基于GPU (graphic processing unit)的动态天空场景仿真方法.在开源场景图形系统(OpenSceneGraph)开发平台上,使用基于物理的方法计算出一天中不同时刻天空的背景色;采用shader技术,用OpenGL着色语言(GLSL)在GPU上对云、太阳进行模拟;针对太阳的位置,绘制出具有真实感效果的光晕.实验结果表明,该仿真方法可以绘制出具有动态效果的、天空颜色能平滑过渡的天空场景,并且真实感强.
2024-09-15 23:44:35 439KB 图形处理器;
1
等面积法则从理论上较为完美地解决了单机-无穷大系统的暂态稳定评估问题,根据加速面积等于减速面积,可以求出极限切除时间:由计算可得极限切除时间为t_c=0.4s。 快速切除短路故障,除了能减轻电气设备因短路流产生的热效应等不良影响外,对于提高电力系统暂态稳定性,还有着决定性的意义。加快切除速度,可以减小切除角.这样既减小了加速面积,有增大了可能的减速面积,从而提高了暂态稳定性。当断路器切除时间设置为0.2s时:小于极限切除时间,可恢复稳定,当大于0.4s时,系统不稳定,发电机失去同步,电压不稳定。
2024-09-15 21:01:23 31KB 电力系统暂态稳定性
1
《控制系统仿真与CAD》是东北大学薛定宇教授编著的一本关于控制系统的经典教材,主要探讨了在计算机辅助设计(CAD)环境下如何进行控制系统的设计、分析和仿真。该书的第三版对原有的内容进行了更新和完善,以适应现代控制理论和技术的发展。 在“控制系统仿真与CAD”这个主题下,我们可以深入探讨以下几个重要的知识点: 1. **控制系统的概念**:控制系统是指通过反馈机制来调节系统输出,使其达到预期性能的一类系统。它可以是机械、电气、液压或任何其他类型的系统,其目标是确保系统稳定并具有良好的动态响应。 2. **控制系统分类**:控制系统可以分为开环控制系统和闭环(反馈)控制系统。开环系统不包含反馈路径,而闭环系统则通过反馈来校正系统误差,提高性能。 3. **计算机辅助设计(CAD)**:CAD技术在控制系统设计中起着关键作用,它允许工程师使用计算机软件来创建、修改、分析和优化设计,提高了设计效率和精度。 4. **控制系统仿真**:这是在计算机上模拟实际系统行为的过程,用于预测系统在不同条件下的响应,以及验证设计的有效性。常用的仿真工具有MATLAB/Simulink、LabVIEW等。 5. **MATLAB/Simulink**:MATLAB是一种强大的数学计算环境,Simulink是其扩展,专门用于建立和仿真动态系统的模型。在《控制系统仿真与CAD》中,薛定宇教授可能介绍了如何使用Simulink进行控制系统建模和仿真。 6. **控制系统的分析**:包括稳定性分析、时域分析(如上升时间、超调量、稳态误差等)、频域分析(如波特图、奈奎斯特图等),这些都是评价控制系统性能的重要指标。 7. **控制系统的优化**:在设计阶段,通常需要通过调整控制器参数来优化系统性能,例如PID控制器的参数整定,或者使用更高级的控制策略如模型预测控制、滑模控制等。 8. **MATLAB在控制工程中的应用**:MATLAB提供了诸如Control System Toolbox等工具箱,用于系统辨识、控制器设计、滤波器设计等任务,是控制工程师不可或缺的工具。 9. **实例解析**:书中可能包含了多个控制系统设计的实际案例,如伺服系统、DC电机控制等,这些案例可以帮助读者更好地理解和应用理论知识。 10. **代码实现**:薛定宇教授的书中的代码可能涵盖了以上提到的各种分析、设计和仿真的实际操作,读者可以通过运行这些代码加深对控制理论的理解。 通过学习《控制系统仿真与CAD》,读者不仅可以掌握控制系统的理论知识,还能掌握使用CAD工具进行实际设计和仿真的技能,为未来在控制工程领域的实践打下坚实基础。
2024-09-14 14:55:17 28.03MB
1
《控制系统仿真MATLAB详解》 MATLAB,全称Matrix Laboratory,是MathWorks公司推出的一款强大的数学计算软件,广泛应用于工程计算、控制设计、信号处理、图像处理等多个领域。在控制系统领域,MATLAB以其便捷的编程环境和丰富的工具箱,成为了进行系统仿真与分析的重要工具。本资料针对MATLAB在控制系统仿真的应用进行了详尽的阐述,非常适合初学者入门学习。 一、MATLAB基础知识 MATLAB的基本操作包括变量定义、矩阵运算、函数调用等。对于控制系统,理解向量和矩阵的概念至关重要,因为它们是构成系统模型的基础。此外,了解MATLAB的脚本文件(.m文件)编写,能够自定义函数和进行流程控制,是进行仿真前的基础准备。 二、控制系统理论 在进行MATLAB仿真之前,我们需要对控制系统的基本概念有所了解,如开环系统、闭环系统、传递函数、根轨迹、频率响应等。这些理论知识是解析和设计控制系统的基石,也是MATLAB仿真过程中分析系统性能的关键。 三、Simulink介绍 Simulink是MATLAB中的一个图形化建模环境,特别适用于动态系统仿真。通过拖拽模块、连线和配置参数,用户可以构建复杂的系统模型。Simulink支持连续时间系统、离散时间系统以及混合系统仿真,且包含多种预定义的控制理论模块,如PID控制器、状态空间模型等。 四、控制系统建模 在Simulink中,我们可以通过传递函数、状态空间模型或直接输入微分方程来建立系统模型。对于线性系统,可以直接使用Simulink库中的Transfer Fcn模块;对于非线性系统,可以利用Function Block自定义非线性特性。 五、系统仿真与分析 一旦模型建立完成,我们就可以运行仿真来研究系统行为。MATLAB提供了各种工具,如Scope用于观察信号波形,Data Inspector用于检查数据,Bode图和Nyquist图用于分析稳定性。通过仿真,我们可以调整系统参数,优化系统性能,比如提高稳定性、快速响应和抑制振荡。 六、控制设计与优化 MATLAB提供了诸如Controller Tuner这样的工具,帮助我们设计和优化控制器。例如,可以自动调整PID参数以满足特定的性能指标。同时,借助优化工具箱,可以实现更复杂的优化问题,如多目标优化或约束优化。 七、实例解析 在PPT中,可能会包含多个具体的控制系统仿真实例,例如PID控制器的设计、鲁棒控制的应用、状态反馈控制的实现等。通过这些实例,初学者可以直观地了解MATLAB在控制仿真中的应用方法,进一步加深理论知识的理解。 总结,MATLAB是控制系统仿真中的强大工具,结合Simulink的图形化建模,使得复杂系统的分析和设计变得直观易懂。通过深入学习和实践,初学者不仅可以掌握MATLAB的基本操作,还能在控制系统领域建立起坚实的基础。
2024-09-14 14:54:25 11.07MB 控制系统 matlab
1
MATLAB SIMULINK与控制系统仿真
2024-09-14 14:48:45 14.01MB MATLAB 控制系统
1
BP神经网络的数据分类-语音特征信号分类,主要根据BP神经网络理论,在MATLAB软件中实现基于BP神经网络的语言特征信号的分类算法。包括数据选择和归一化,BP神经网络构建、BP神经网络训练以及BP神经网络分类。
2024-09-14 12:15:47 368KB BP神经网络 MATLAB仿真
1
标题中的“基于间接卡尔曼滤波的IMU与GPS融合MATLAB仿真”涉及的是惯性测量单元(IMU)和全球定位系统(GPS)数据融合技术,利用了数学上的间接扩展卡尔曼滤波(Indirect Extended Kalman Filter, IEKF)方法。在现代导航系统中,这种融合技术被广泛应用,以提高定位精度和鲁棒性。 卡尔曼滤波是一种统计滤波算法,用于估算动态系统中随时间变化的未知变量。扩展卡尔曼滤波是卡尔曼滤波的非线性版本,适用于处理非线性系统模型。在间接卡尔曼滤波中,滤波器的更新和预测步骤通常涉及对系统状态和测量的非线性函数进行求导,以得到线性化版本。 在这个项目中,使用MATLAB进行仿真,这是一种强大的数值计算和可视化工具,特别适合进行信号处理和系统建模。MATLAB的Simulink环境可以创建图形化模型,便于设计、仿真和分析复杂的系统,包括IMU和GPS数据融合。 IMU包含加速度计和陀螺仪,能提供物体的线性加速度和角速度信息。然而,由于漂移和噪声,长期使用后IMU的数据会累积误差。相反,GPS可以提供全球范围内的精确位置信息,但可能受到遮挡、多路径效应和信号延迟的影响。通过将两者数据融合,我们可以得到更稳定、准确的位置估计。 IEKF的流程大致如下: 1. **初始化**:设置初始状态估计和协方差矩阵。 2. **预测**:根据IMU模型和上一时刻的状态,预测下一时刻的状态。 3. **线性化**:由于模型非线性,需要对预测状态和测量进行泰勒级数展开,得到线性化模型。 4. **更新**:利用GPS测量,更新状态估计,减小预测误差。 5. **协方差更新**:更新状态估计的不确定性。 在“Indirect_EKF_IMU_GPS-master”这个压缩包中,可能包含了以下文件和内容: - MATLAB源代码:实现IEKF算法和仿真逻辑的.m文件。 - 数据文件:可能包含预生成的IMU和GPS仿真数据,用于测试滤波器性能。 - Simulink模型:图形化的系统模型,显示IMU、GPS和EKF之间的数据流。 - 结果可视化:可能有显示滤波结果的图像或日志文件,如轨迹对比、误差分析等。 通过这个项目,学习者可以深入了解如何在实际应用中结合IMU和GPS数据,以及如何利用MATLAB进行滤波器设计和系统仿真。此外,还能掌握如何处理非线性系统和不确定性,并了解如何评估和优化滤波器性能。对于想要在导航、自动驾驶或无人机等领域工作的工程师来说,这是一个非常有价值的学习资源。
2024-09-14 11:49:30 8KB matlab
1
【高速扫描振镜驱动原理图】的描述提到了“高速振镜驱动电路”,这涉及到电机驱动和电路设计两个关键领域。高速振镜是一种常见的光学扫描元件,常用于激光打标、投影显示等领域,通过快速改变镜片的角度来扫描光束。 电机驱动部分,电路主要由以下几个部分构成: 1. **PIV运算后的信号**:PIV可能是位置或速度的反馈信号,经过运算后用于控制电机的动态响应。这种反馈机制确保了电机能够精确地按照指令运动。 2. **电流检测电阻**:用于实时监测电机的工作电流,确保电机在安全范围内运行,并可以用来调整电机扭矩和速度。 3. **差分位置指令信号输入**:差分信号能提高抗干扰能力,提供更准确的位置控制指令。 4. **实际位置信号输入**:来自电机编码器的信号,用于实时反馈电机的当前位置,与指令位置进行比较,形成误差信号。 5. **积分调节环节**和**速度调节环节**:是PID(比例-积分-微分)控制器的一部分,通过积分作用消除稳态误差,通过速度调节快速响应变化。 6. **误差信号**:是位置指令与实际位置的差值,经过频率补偿后,其大小可以调整,以适应不同系统的需求。 7. **比例系数调节**和**积分系数调节**:是调整PID控制器性能的重要参数,根据系统特性和应用需求进行设定。 8. **误差幅度限制**:防止因误差过大导致系统不稳定或损坏设备。 9. **窗口比较器**和**逻辑输出接口**:当误差超过预设范围时,输出逻辑信号,可用于报警或控制系统其他部分的动作。 10. **位置前馈**:基于当前位置的信息,提前调整电机的驱动信号,提高系统的响应速度。 电路中涉及的元器件包括运算放大器(如OP27、OP470G等)、电源芯片(如LM675、LM7812CT、LM7912CT等)、比较器(如LM339)、电源滤波电容(如1000uF 25V)以及各种电阻、电容等,这些共同构成了一个稳定、高效的驱动电路。 此外,电路还包含了电源驱动部分,如功率驱动电源电路,以及电流检测电路,用于提供稳定的工作电压和电流,确保电机的高效、安全运行。 综上,【高速扫描振镜驱动原理图】主要涵盖了电机驱动技术中的反馈控制策略、电路设计技巧以及电源管理等方面,是实现高速振镜精确扫描的关键。
2024-09-13 18:26:48 239KB 电机驱动 电路设计
1