AI在电网中应用
2021-06-24 12:42:36 4.49MB AI
1
极限学习机的回归拟合与分类
1
请引用 Nuha、Hilal H.、Adil Balghonaim、Bo Liu、Mohamed Mohandes、Mohamed Deriche 和 Faramarz Fekri。 “用于地震数据压缩的带有极限学习机的深度神经网络。” 阿拉伯科学与工程杂志 45,没有。 3 (2020):1367-1377。 Kasun、Liyanaarachchi Lekamalage Chamara、Hongming Zhou、Guang-Bin Huang 和 Chi Man Vong。 “使用极限学习机进行大数据的表征学习。” IEEE 智能系统 28,没有。 6 (2013): 31-34。
2021-06-17 22:02:41 9.53MB matlab
1
逐步线性回归能较好地克服多重共线性现象的发生,因此逐步回归分析是探索多变量关系的最常用的分析方法,智能算法是现代数据分析的主要方法。本文通过一个实例进行了对比研究,预测结果显示:在预测的精度上,在隐含层数目相同时,RBF径向神经网络>BP神经网络>逐步线性回归>ELM极限学习机。通过对比分析,发现神经网络方法较回归分析预测效果更好,误差相对较小。
1
极限学习机模型matlab_ELM.zip
2021-06-03 13:06:08 1.16MB matlab ELM
1
堆叠式自动编码器和基于极限学习机的电力负荷预测混合模型
2021-06-03 09:42:02 464KB 研究论文
1
河流水质实时评价技术对当前河流水资源管理和保护具有重要意义。本文以淮河水质为例,利用粒子群优化的极限学习机(Particle Swarm Optimization-Extreme Learning Machine,PSO-ELM)分类算法对淮河水质进行类别判定。在极限学习机(ELM)分类算法中随机给定输入权值矩阵和隐含层偏置,需要较多的隐含层节点才能达到所需的精度要求,隐含层节点过多易于出现过拟合现象并增加算法的计算量。本文利用粒子群算法(PSO)优化极限学习机的输入权值矩阵和隐含层偏置,计算输出权值矩阵,以减少隐含层节点。通过对比PSO-ELM、ELM这两种算法发现,PSO-ELM算法以较少的隐含层节点可获得更高的精度,降低了对实验样本的需求量,提高了模型的拟合能力。实验结果表明,PSO-ELM对于水质类别判定具有一定的可行性和有效性。
1
利用极限核学习机预测,有数据,可以直接运行,在此基础上根据自己的数据直接修改,拟合效果好,可以在此基础上进行进一步粒子群优化,提高模型的适应度值
2021-05-20 18:08:05 125KB ELM 极限学习机 预测 粒子群优化
1
极限学习机的Matlab实现,包含训练集和数据集
1
极限学习机 机器学习 高斯核 线性核 小波核
2021-05-08 19:16:25 2KB 核极限学习机
1