这是一个实现简单,准确率较高的方法。 本文主要通过以下几个方面进行介绍: 数据预处理 特征提取 模型训练与测试 模型优化 本案例是通过SVM分类器对样本进行训练与测试,达到识别车牌字母、数字及汉字的目的。关于SVM的原理这里就不多赘述了,想了解的同学可以看下陈老师的SVM讲解,写的细致且易懂。 耳东陈:零基础学SVM—Support Vector Machine(一) 数据集是已经分割好的车牌字符,共有1000张车牌字符图片,大小均为47*92,两个txt文本文件分别包含所有字符和需要手工校正的字符图片的名字及对应的类别。
2024-05-18 12:29:01 1013KB matlab 机器学习 车牌识别
1
手写数字0到9字符集,用于机器学习训练样本,样本丰富,亲测可用
2024-05-18 11:25:01 18.97MB 样本丰富 手写字体 机器学习
1
1.数据清洗 2.聚类 3.逻辑回归 4.PCA降维 5.SVM支持向量机 这份压缩包涵盖了多个数据科学和机器学习领域的关键工具和技术,为数据分析和建模提供了强大的支持。在这个信息的宇宙中,我们可以发现一系列的宝藏,包括数据清洗的魔法、聚类的智慧、逻辑回归的推理、PCA降维的神秘和SVM支持向量机的力量。 首先,数据清洗是这份宝藏中的第一个星辰。它是数据科学的入口,通过神奇的数据处理手段,可以发掘、纠正和去除数据中的不准确、不完整或无效的信息。在这个压缩包中,数据清洗的魔法涵盖了各种情况,如处理缺失值、消除重复记录、格式规范化等。这个工具让数据焕发新生,为后续的分析和建模创造了纯净的舞台。 其次,聚类是这份宝藏的璀璨明珠。在这个信息宇宙中,聚类技术能够将数据分组,找到其中的潜在模式和相似性。它是数据中的探险者,帮助我们在海量信息中发现隐藏的结构和规律。在压缩包中,聚类技术为我们提供了一把探索数据空间的钥匙,使我们能够更好地理解数据的本质。 第三颗星星是逻辑回归的推理之星。在这个宇宙中,逻辑回归是一种强大的预测工具,通过对已知数据进行分析,预测未知数据的可能性。这个工具为我们揭示了
2024-05-14 09:42:36 1.03MB 机器学习 聚类
1
项目描述请参见:https://handsome-man.blog.csdn.net/article/details/116572729 通过使用图像形心和质心计算某种皮肤细胞图像形心的例子理解图像形心和质心的应用方法。 项目可直接运行~
使用说明 分对话系统和机器翻译两部分 data为数据集 model为训练的模型 translation文件夹下又分了Seq2Seq和transformer两个模型,大家按需查看使用 以transformer文件夹为例,attention.py主要实现了注意力机制,transformer.py实现了transformer的主体架构,data.py为数据的预处理以及生成了词典、dataset、dataloader,readdata.py运行可以查看数据形状,train.py为训练模型,predict.py为预测,config.py为一些参数的定义。 transformer机器翻译的模型是用cuda:1训练的,如果要使用可能需要修改代码 如:gpu->cpu,即在CPU上使用 torch.load('trans_encoder.mdl', map_location= lambda storage, loc: storage) torch.load('trans_decoder.mdl', map_location= lambda storage, loc: storage)
1
python django javascript bootstrap jquery 协同过滤 推荐算法 机器学习 影片显示、影片分类显示、热门影片排序显示、收藏影片排序显示、时间排序显示、评分排序显示、算法推荐、影片搜索、影片信息管理
2024-05-12 19:33:04 14.44MB python 推荐算法 开发语言 机器学习
1
数据标准化(Normalization)是指:将数据按照一定的比例进行缩放,使其落入一个特定的小区间。 为什么要进行数据标准化呢? 去除数据的单位限制,将其转化为无量纲的纯数值,便于不同量级、不同单位或不同范围的数据转化为统一的标准数值,以便进行比较分析和加权。 通过手写Python代码对海伦约会对象数据集完成数据标准化归一化的预处理。 其中包含: (1)Min-Max标准化 (2)Z-Score标准化 (3)小数定标标准化 (4)均值归一化法 (5)向量归一化 (6)指数转换
2024-05-12 16:42:06 981B python 机器学习 数据挖掘 数据预处理
1
实验内容: 1)下载人脸识别数据库; 2)测试主成分分析PCA算法分类精度; 3)编写、运行程序并查看结果; 4)调节参数主成分分析PCA算法相关参数,分析其对模型效果的影响。
2024-05-10 21:28:06 750KB 机器学习
1
本文拟对kaggle上的一篇关于随机森林模型的文章进行案例调研,对文章的各个环节,包括案例描述、数据检视、特征工程、模型训练和模型优化使用的方法进行梳理并对文章的亮点与不足做出相应的反思。该文章的任务是基于随机森林模型,结合人的15项特征来预测该人年收入是否超过5万美元。数据源是美国人口普查局1994年的普查数据,调查对象数量为32561。这篇文章的亮点有:1.特征工程使用了简单而且容易理解的方法;2.进行充分的数据检视,对后续数据处理有了启示性作用;3、通过计算特征重要度过滤不重要的特征,展现了模型可以不断优化的可能性。主要不足有:1、没有解决高基数问题;2.并没有优化模型参数;3.没有处理离群值。
2024-05-10 20:49:31 1.66MB 机器学习 随机森林
1