头部姿势数据库是1590个单眼面部图像的基准,其具有从-90到+90度的平移和倾斜角度的变化。对于每个人,可以使用2个系列的93个图像(93个不同的姿势)。每人2个系列的目的是能够训练和测试已知和未知面部的算法(参见第2和第3节)。数据库中的人戴或不戴眼镜,并有各种肤色。背景是自愿中立和整洁的,以便专注于面部操作。 该数据集包含了水平方向上的角度标记与垂直方向上的角度标记,是kaggle比赛常用的头部姿态估计训练数据集。
2020-01-04 03:14:56 15.95MB datasets headpose
1
Pointing Data数据库包含 个人的图像, 每个人有 个序列的 张不同姿态时的图像. 数据库中的人的皮肤颜色并不相同. 头部的姿态在水平方向上从正面到全侧面的 种姿态, 垂直方向上有 种姿态. 采集人的年龄在20岁到40岁之间. 头部的位置手工切割得到. N. Gourier, D. Hall, J. L. Crowley Estimating Face Orientation from Robust Detection of Salient Facial Features Proceedings of Pointing 2004, ICPR, International Workshop on Visual Observation of Deictic Gestures, Cambridge, UK
2019-12-21 21:56:56 16.11MB 姿态估计 人脸 数据 带角度
1
用于3D人体姿态估计的PyTorch实现
2019-12-21 21:40:55 1.89MB Python开发-机器学习
1
UKF姿态估计算法。同时,另有十种论文中常见姿态估计方法如:EKF姿态估计、、Madgwick算法、Mahony算法、PX4姿态估计、四元数、扩展信息滤波、tride、DCM等等 有数据,有参考文献
2019-12-21 21:38:12 7.5MB MATLAB 姿态估计 MEMS i
1
1.查阅学习了pca主成分分析和svd矩阵奇异值分解的原理; 2.打印棋盘纸用GML软件对相机进行了标定; 3.利用标定好的相机矩阵结合前面所学的sift算法和rasic算法对相机的姿态进行估计。
2019-12-21 20:54:07 286KB 标定相机 sift ransac 相机姿态
1
论文+翻译+PPT+代码+动画视频 PoseCNN:A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes; 机器人与现实世界进行交互时,对已知目标的6D姿态估计至关重要。由于对象的多样性,以及由于对象之间的杂波和遮挡而导致场景的复杂性,使得该问题具有挑战性。本文介绍了一种用于6D目标姿态估计的新型卷积神经网络PoseCNN。PoseCNN通过在图像中定位物体的中心并预测其与摄像机的距离来估计物体的三维平移。通过回归到四元数(w,x,y,z)表示来估计物体的三维旋转。
2019-12-21 20:52:34 26.44MB 6D Pose ICP
1
人体姿态估计论文(open pose) Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields ∗
2019-12-21 20:09:25 8.08MB 人体姿态估计
1
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields ∗ 源代码 open pose 实时人体姿态估计 caffe+python+matlab
2019-12-21 20:09:25 28.24MB openpose 人体姿态估计
1
用IMU的数据进行机器人位置和姿态的估计,比如acc或者gyro积分每个sample怎么进行坐标变换,怎么由rawdata得到位置和姿态信息的计算细节等。 In recent years, microelectromechanical system (MEMS) inertial sensors (3D accelerometers and 3D gyroscopes) have become widely available due to their small size and low cost. Inertial sensor measurements are obtained at high sampling rates and can be integrated to obtain position and orientation information. These estimates are accurate on a short time scale, but suer from integration drift over longer time scales. To overcome this issue, inertial sensors are typically combined with additional sensors and models. In this tutorial we focus on the signal processing aspects of position and orientation estimation using inertial sensors. We discuss dierent modeling choices and a selected number of important algorithms. The algorithms include optimization-based smoothing and ltering as well as computationally cheaper extended Kalman lter and complementary lter implementations. The quality of their estimates is illustrated using both experimental and simulated data.
2019-12-21 18:52:26 5.33MB IMU 惯导 导航 捷联
1