MATLAB交通 标志 识别,输入视频,对视频流进行识别。可制作GUI界面。可做成蓝色 ,黄色和 红色的交通标志 识别。
1
MATLAB交通标志识别,识别对象是视频。
1
基于颜色与形状的实景交通标志分类研究,李辰,杨杰,针对全国三大类交通标志的基本特征,设计一种快速有效的分类方式与标准,实验中将实景交通标志在RGB和HSV色彩空间分别做颜色分割,
2021-12-28 23:29:11 392KB 图像识别
1
该课题为基于Matlab的交通标志识别系统。带有一个人机交互界面。可以判别红色精灵蓝色指示和黄色警示三类交通标志。可以进行二次拓展,也就是每次识别不需要人为手工的去选择颜色。也可以进行视频的识别。识别之后可以进行语音播报。
2021-12-28 09:39:28 3.54MB matlab
1
这个数据集是开源出来的数据集,目前只能下载下来训练集,因此要保存一份到csdn上面,这个数据集是非常重要的虽然只有170M
2021-12-25 18:27:43 166.22MB 训练交通标志识别的数据集
1
为了实现在复杂环境下具有较高准确率的交通标志识别以及在小样本情况下也能良好工作的识别网络,提出一种基于卷积神经网络和多类SVM的交通标志识别模型。此模型不需人工设计特征提取算法,且在小样本训练集上也能训练出具有较高准确率的分类模型。除此之外,利用迁移学习策略,避免重新初始化卷积神经网络,在节省大量样本与训练时间的同时能有效避免过拟合的发生。实验结果表明,提出的分类模型在小样本训练集上进行训练后得到的模型在实际测试中有较好的表现且对处于复杂背景下和严重畸变的交通标志具有可靠的识别能力和良好分类结果。
2021-12-21 13:00:32 1.3MB 自动化技术
1
道路交通标志的检测与识别技术研究。分类器采用SVM
2021-12-21 12:36:29 6.24MB 交通 检测 识别
1
交通标志识别(TSR)系统是智能交通系统的重要研究方向。道路交通环境复杂、交通标志数据库规模庞大等因素导致在设计TSR系统可行性方案时必须考虑计算复杂度和识别率。提出了一种高效且快速的基于改进主成分分析(PCA)法和极限学习机(ELM)的TSR算法, 被称为PCA-HOG。该算法首先提取交通标志数据库中每个交通标志的梯度方向直方图(HOG)特征, 利用改进PCA算法对提取出的HOG特征进行降维处理, 之后利用降维后的HOG特征进行ELM模型训练, 利用经过训练的ELM模型识别测试图片。实验结果表明, 基于PCA-HOG和ELM模型的交通标志识别算法获得的计算复杂度低, 图像识别率可达97.69%。
1
基于Matlab的交通标志识别系统设计与实现.pdf
2021-12-12 23:58:01 683KB MATLAB 数据分析 数据处理 论文期刊
本篇博客tensorflow1.7,整个项目源码: 引言 本次博客将分享Udacity无人驾驶纳米学位的另一个项目,交通标志的识别。 本次项目实现主要采用CNN卷积神经网络,具体的网络结构参考Lecun提出的LeNet结构。参考文献: 项目流程图 本项目的实现流程如下所示: 代码实现及解释 接下来我们就按照项目流程图来逐块实现,本项目数据集: 如果打不开,则有备用链接: #import important packages/libraries import numpy as np import tensorflow as tf import pickle import matplotlib.pyplot as plt import random import csv from sklearn.utils import shuffle from tensorflow.contrib.laye
2021-12-07 17:09:18 11.48MB JupyterNotebook
1