matlab的基于遗传算法优化bp神经网络多输入多输出预测模型,有代码和EXCEL数据参考,精度还可以,直接运行即可,换数据OK。 这个程序是一个基于遗传算法优化的BP神经网络多输入两输出模型。下面我将对程序进行详细分析。 首先,程序读取了一个名为“数据.xlsx”的Excel文件,其中包含了输入数据和输出数据。输入数据存储在名为“input”的矩阵中,输出数据存储在名为“output”的矩阵中。 接下来,程序设置了训练数据和预测数据。训练数据包括前1900个样本,存储在名为“input_train”和“output_train”的矩阵中。预测数据包括剩余的样本,存储在名为“input_test”和“output_test”的矩阵中。 然后,程序对输入数据进行了归一化处理,将其归一化到[-1,1]的范围内。归一化后的数据存储在名为“inputn”和“outputn”的矩阵中,归一化的参数存储在名为“inputps”和“outputps”的结构体中。 接下来,程序定义了神经网络的节点个数。输入层节点个数为输入数据的列数,隐含层节点个数为10,输出层节点个数为输出数据的列数。 然
2024-09-04 13:26:12 890KB matlab 神经网络
1
这是一个完整的机器人项目,包含算法仿真、机械结构设计、电子硬件设计、嵌入式软件设计、上位机软件设计等多个部分,完成了以下内容:使用 SolidWorks 完成的机械结构设计 基于 MATLAB / Simulink / Simscape 的算法设计和机器人物理仿真。基于 STM32,使用 CAN 通信的无刷电机驱动板。基于 ESP32、MPU6050 的运动控制模块(主控模块)。基于 ffmpeg / ffserver 的 Linux 图传模块,使用低耦合可拔插方案。支持蓝牙配网的 Android 遥控 APP。整个机器人项目被分成如下的几个部分,分别位于仓库不同目录下,内部有更详细的说明,读者可以按需查看:solidworks:机械结构设计,包含所有零件和总装配体模型文件 matlab:算法仿真,包含模型建立、算法设计和仿真文件等stm32-foc:无刷电机驱动板,包含硬件设计文件和STM32代码工程esp32-controller:运动控制模块,包含硬件设计文件和ESP32代码工程linux-fpv:Linux 图传模块,包含相关Shell脚本和Python脚本android:An
2024-09-03 14:37:13 60.25MB 软件工程 机器人
1
【文章概述】 本文主要探讨了基于改进遗传算法的FIR数字滤波器的优化设计。在数字信号处理领域,FIR滤波器因其稳定性、线性相位特性以及设计灵活性而广泛应用。然而,传统的设计方法如窗函数法、经验公式和Parks-McClellan算法各有不足,如无法满足多样需求、设计复杂或收敛速度慢。因此,研究人员转向使用遗传算法来优化FIR滤波器的设计。 【改进的遗传算法】 遗传算法是一种模拟生物进化过程的全局优化搜索算法,具有较强的鲁棒性。然而,标准遗传算法在寻找全局最优解时可能会陷入早熟现象,导致收敛速度慢。为了解决这一问题,文章提出了结合BP神经网络的改进遗传算法。这种结合方式利用了遗传算法的全局搜索能力和BP神经网络的局部搜索能力,有效地解决了大规模多极值优化问题,提高了算法的收敛速度和效果。 【FIR数字滤波器】 FIR数字滤波器是一种输出只与过去和现在输入相关的系统,其频率特性可以通过单位冲激响应表示。对于M阶线性相位FIR滤波器,存在特定的对称约束条件。滤波器的优化设计目标是使实际滤波器的频率特性H(w)接近理想滤波器的频率特性Hd(w),通常采用加权的切比雪夫最佳一致逼近准则。该准则通过误差加权函数W(w)来调整通带和阻带的逼近精度。 【优化过程】 文章描述了改进遗传算法在FIR滤波器设计中的具体实现步骤,包括随机生成初始种群,计算个体适应度,以及利用BP神经网络对非最优个体进行优化,生成新一代种群。这个过程不断迭代,直到满足预设的进化代数或误差阈值。 【总结】 通过对遗传算法的改进,结合BP神经网络,设计FIR数字滤波器的效率和精度得到了显著提升。这种方法不仅能够避免标准遗传算法的早熟问题,还能够快速找到接近全局最优的滤波器设计方案,适用于对时间要求严格的系统。这一研究为FIR滤波器设计提供了新的优化策略,对于数字信号处理领域的实践应用具有重要意义。
2024-09-02 19:53:17 105KB 遗传算法
1
EM(Expectation-Maximization,期望最大化)算法是一种在概率模型中寻找参数最大似然估计的迭代方法,常用于处理含有隐变量的概率模型。在本压缩包中,"em算法matlab代码-gmi高斯混合插补1"的描述表明,它包含了一个使用MATLAB实现的EM算法,专门用于Gaussian Mixture Imputation(高斯混合插补)。高斯混合模型(GMM)是概率密度函数的一种形式,由多个高斯分布加权和而成,常用于数据建模和聚类。 GMM在处理缺失数据时,可以作为插补方法,因为每个观测值可能属于一个或多个高斯分布之一。当数据有缺失时,EM算法通过不断迭代来估计最佳的高斯分布参数以及数据的隐含类别,从而对缺失值进行填充。 在MATLAB中实现EM算法,通常会包含以下步骤: 1. **初始化**:随机选择高斯分布的参数,包括均值(mean)、协方差矩阵(covariance matrix)和混合系数(weights)。 2. **期望(E)步**:利用当前的参数估计每个观测值属于每个高斯分量的概率(后验概率),并计算这些概率的加权平均值,用以更新缺失数据的插补值。 3. **最大化(M)步**:基于E步得到的后验概率,重新估计每个高斯分量的参数。这包括计算每个分量的均值、协方差矩阵和混合权重。 4. **迭代与终止**:重复E步和M步,直到模型参数收敛或者达到预设的最大迭代次数。收敛可以通过比较连续两次迭代的参数变化来判断。 在压缩包中的"a.txt"可能是代码的说明文档,解释了代码的结构和使用方法;而"gmi-master"很可能是一个文件夹,包含了实现EM算法和高斯混合插补的具体MATLAB代码文件。具体代码通常会包含函数定义,如`initialize()`用于初始化参数,`expectation()`执行E步,`maximization()`执行M步,以及主函数`em_gmi()`将这些步骤整合在一起。 学习和理解这个代码,你可以深入理解EM算法的工作原理,以及如何在实际问题中应用高斯混合模型处理缺失数据。这对于数据分析、机器学习和统计推断等领域都具有重要意义。通过阅读和运行这段代码,你还可以锻炼自己的编程和调试技能,进一步提升在MATLAB环境下的数据处理能力。
2024-09-02 17:35:58 149KB
1
AES(Advanced Encryption Standard)是一种广泛使用的块密码标准,用于数据加密和保护隐私。在MATLAB环境中实现AES加密和解密算法是一项重要的技能,特别是在教学和科研中。MATLAB2019a版本提供了丰富的数学计算功能,使得实现这种复杂的算法变得相对简单。 AES的核心过程包括四个基本操作:字节代换(SubBytes)、行位移(ShiftRows)、列混淆(MixColumns)和密钥扩展(KeyExpansion)。以下是对这些步骤的详细解释: 1. **字节代换**:AES使用了一个8x8的S盒(Substitution Box),将输入的8位字节替换为另一个非线性映射的字节。这个过程增强了算法的安全性,因为攻击者很难预测输入和输出之间的关系。 2. **行位移**:这是对矩阵的行进行循环位移,每一行的位移量不同,目的是增加数据混淆,使攻击者难以恢复原始信息。 3. **列混淆**:在MixColumns步骤中,每个4字节的列通过一个特定的线性变换进行混淆,这个变换是基于GF(2^8)的乘法运算。这个操作提高了加密的扩散性,使得一个位置的改变会影响整个数据块。 4. **密钥扩展**:AES的密钥长度可以是128、192或256位。密钥扩展算法将初始密钥扩展成足够多的轮密钥,每轮加密使用不同的密钥,增强安全性。 在提供的压缩包中,我们可以看到一些关键的MATLAB脚本文件: - `main.m`:这很可能是整个程序的主入口,它调用其他函数来执行AES的加密和解密过程。 - `cipher.m`:可能包含了执行AES核心操作的代码,如上述的四个步骤。 - `key_expansion.m`:专门处理密钥扩展的函数,根据AES标准生成后续轮的密钥。 - `mix_columns.m`:对应AES中的列混淆操作。 - `aes_demo.m`:示例程序,演示如何使用AES加密和解密数据。 - `aes_init.m`:可能包含了初始化函数,用于设置算法参数。 - `poly_mult.m`:可能涉及到GF(2^8)上的多项式乘法,这是列混淆操作的一部分。 - `cycle.m`:可能与密钥扩展中的循环操作有关。 在实际使用中,用户可以通过调用这些函数,传入原始数据和密钥,完成加密和解密任务。对于本科和硕士级别的学生,理解并实现这些算法有助于深入理解和掌握密码学原理,同时提高编程能力。在MATLAB环境中进行实验,可以方便地调试和分析算法的性能,对于学术研究和教育有着积极的意义。
2024-08-31 18:17:05 6KB matlab
1
混沌加密算法是一种结合了混沌理论和密码学的高级加密技术,因其复杂性和不可预测性而被广泛研究。在本项目中,我们关注的是基于约瑟夫环(Josephus Problem)的混沌加密算法在MATLAB平台上的仿真实现。MATLAB是一款强大的数学计算软件,非常适合进行复杂的数值模拟和算法开发。 约瑟夫环是一个著名的理论问题,它涉及到在循环结构中按一定规则剔除元素的过程。在加密领域,约瑟夫环的概念可以被巧妙地利用来生成非线性的序列,这种序列对于密码学来说是非常有价值的,因为它可以增加破解的难度。 混沌系统是那些表现出极端敏感性对初始条件的系统,即使微小的变化也会导致结果的巨大差异。混沌理论在加密中应用时,可以生成看似随机但实际上由初始条件控制的序列,这使得加密过程既具有随机性又保留了可逆性,是加密算法设计的理想选择。 在这个MATLAB实现中,`test.m`可能是主函数,用于调用并测试加密算法。`yuesefu.m`很可能是实现约瑟夫环混沌加密算法的具体代码,包括混沌系统的定义、约瑟夫环的操作以及数据的加密和解密过程。文件`1.wav`则可能是一个示例音频文件,用于演示加密算法的效果,将原始音频数据经过加密处理后再解密,以验证算法的正确性和安全性。 混沌加密算法的基本步骤通常包括: 1. **混沌映射**:选择一个混沌映射,如洛伦兹映射或 Logistic 映射,通过迭代生成混沌序列。 2. **密钥生成**:混沌序列与初始条件密切相关,因此可以通过精心选择初始条件和参数来生成密钥。 3. **数据预处理**:将原始数据转换为适合混沌加密的形式,如二进制表示。 4. **加密过程**:将混沌序列与待加密数据进行某种操作(如异或)来混淆数据。 5. **约瑟夫环应用**:在加密过程中引入约瑟夫环,可能通过剔除或替换某些元素来进一步增强加密强度。 6. **数据解密**:使用相同的密钥和算法,通过逆操作恢复原始数据。 7. **安全性和性能评估**:通过各种密码分析方法(如差分分析、线性分析等)评估加密算法的安全性,并测试其在不同数据量下的运行效率。 这个MATLAB实现提供了一个理解和研究混沌加密算法的良好平台,同时也为其他领域的研究人员提供了实验和改进的基础。用户可以通过修改`yuesefu.m`中的参数和初始条件,探索不同的混沌行为和加密效果,以优化算法的性能和安全性。
2024-08-31 18:09:14 135KB matlab 约瑟夫环
1
CSDN海神之光上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函数:VoiceRecognition.m; Fig:GUI操作界面; 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到 Matlab的当前文件夹中; 步骤二:双击打开VoiceRecognition.m文件;(若有其他m文件,无需运行) 步骤三:点击运行,等程序运行完得到结果; 4、语音处理系列仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 语音处理系列程序定制或科研合作方向:语音隐藏、语音压缩、语音识别、语音去噪、语音评价、语音加密、语音合成、语音分析、语音分离、语音处理、语音编码、音乐检索、特征提取、声源定位、情感识别、语音采集播放变速等; CSDN海神之光上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函
2024-08-31 17:57:04 316KB matlab
1
项目背景与目的 现代家用电器,特别是冰箱,已经不仅仅是简单的食品存储设备,它们逐渐集成了更多的智能化功能。随着物联网(IoT)技术的发展和智能家居的普及,如何提升冰箱的制冷和加热效率、稳定性以及用户体验,成为家电行业的重要课题。基于PID(Proportional-Integral-Derivative)算法的冰箱制冷加热项目旨在通过精确的温度控制,优化冰箱的性能,提高能效,提供更优质的用户体验。 本项目的主要目的是: 温度精确控制:通过引入PID算法,实现对冰箱内部温度的精确控制,确保食品保鲜效果和节能。 智能调节:根据用户需求和外部环境的变化,智能调整制冷和加热模式,提高冰箱的适应性和效率。 数据监控与分析:实时监控冰箱的运行状态,通过数据分析优化控制策略,提升系统的稳定性和可靠性。
2024-08-31 09:09:49 2.95MB
1
【标题】中的“matlabB样条轨迹规划,多目标优化,7次非均匀B样条轨迹规划”涉及的是机器人路径规划领域中的一个重要技术。在机器人运动控制中,轨迹规划是确保机器人按照预设的方式从起点到终点移动的关键步骤。B样条(B-Spline)是一种在数学和工程中广泛使用的曲线拟合方法,它允许我们生成平滑且可调整的曲线。在这里,提到的是7次非均匀B样条,意味着曲线由7次多项式控制,并且节点间距可以不均匀,这样可以更好地适应不同的路径需求。 “基于NSGAII遗传算法,实现时间 能量 冲击最优”指出该规划过程采用了多目标优化。NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种高效的多目标优化算法,它利用种群进化策略来同时优化多个相互冲突的目标函数。在这个案例中,目标是找到一条轨迹,使得它在时间消耗、能量消耗和冲击(通常与舒适度或机械损伤相关)方面达到最优平衡。 【描述】中提到,“换上自己的关节值和时间就能用”,意味着这个MATLAB代码提供了一个通用框架,用户只需输入自己机器人的关节角度序列和期望的规划时间,就可以自动生成符合优化条件的轨迹。代码中的“中文注释”对于初学者来说非常友好,有助于理解每个步骤的功能和意义。 结合【标签】“软件/插件”,我们可以推断这是一个可以应用于MATLAB环境的软件或工具,可能是一个MATLAB函数或者脚本,用户可以下载并直接在MATLAB环境中运行,进行机器人轨迹规划的仿真和优化。 【压缩包子文件的文件名称列表】包括一个HTML文件,可能包含了代码的详细解释或者使用说明;四张图片(1.jpg, 2.jpg, 3.jpg, 4.jpg, 5.jpg)可能展示了轨迹规划的示例或者算法流程图;以及一个名为“样条轨迹规划多目标优化.txt”的文本文件,很可能包含了源代码或规划结果的数据。 这个压缩包提供的资源是一个用MATLAB实现的7次非均匀B样条轨迹规划工具,采用NSGA-II遗传算法对时间、能量和冲击进行多目标优化。用户可以根据自己的关节数据和时间要求,利用这个工具生成最佳的机器人运动轨迹,而且代码有中文注释,便于理解和应用。对于机器人控制和多目标优化领域的学习者和研究者来说,这是一个非常实用的资源。
2024-08-30 15:18:15 426KB
1
快速而准确的圆弧插补算法一直是人们努力追求的目标。本文在深入析了五种圆弧插补算法的基础上,把它们归纳到统一的理论依据之下,并就人们在 论方面研究甚少的插补运算的速度和插补轨迹精度问题进行了深入的分析与理论 导。同时,通过在计算机上对各种插补算法在插补运算速度和插补轨迹精度两方面 实际测试、验证与分析比较,提出了最佳择优方案,并在实际应用之中取得了满意 效果。
2024-08-30 11:51:55 206KB
1