对Buades等人提出的非局部均值图像去噪算法进行改进。传统的方法在滤波参数定义上存在缺陷,为了解决这个问题,通过建立噪声方差与滤波系数的关系,提出解决噪声估计的方法。另外,根据小波系数的分布特点,利用GGD模型参数(尺度和形状参数)对系数进行拟合,并用GGD模型参数提出一种有效的噪声方差估计算法。实验结果表明,该噪声方差估计算法不仅能有效地估计噪声方差大小,而且使原有的非局部均值算法具有自适应性。这种自适应的非局部均值算法可以达到近似最优,具有鲁棒性和快速性,且算法精度高。
2024-09-05 10:57:57 825KB
1
算法笔记 可供各学校计算机上机复试及各OJ平台刷题使用算法笔记 可供各学校计算机上机复试及各OJ平台刷题使用算法笔记 可供各学校计算机上机复试及各OJ平台刷题使用算法笔记 可供各学校计算机上机复试及各OJ平台刷题使用算法笔记 可供各学校计算机上机复试及各OJ平台刷题使用算法笔记 可供各学校计算机上机复试及各OJ平台刷题使用算法笔记 可供各学校计算机上机复试及各OJ平台刷题使用算法笔记 可供各学校计算机上机复试及各OJ平台刷题使用算法笔记 可供各学校计算机上机复试及各OJ平台刷题使用
2024-09-05 00:04:21 133.18MB 算法笔记 可供各学校计算机上机复
1
matlab的基于遗传算法优化bp神经网络多输入多输出预测模型,有代码和EXCEL数据参考,精度还可以,直接运行即可,换数据OK。 这个程序是一个基于遗传算法优化的BP神经网络多输入两输出模型。下面我将对程序进行详细分析。 首先,程序读取了一个名为“数据.xlsx”的Excel文件,其中包含了输入数据和输出数据。输入数据存储在名为“input”的矩阵中,输出数据存储在名为“output”的矩阵中。 接下来,程序设置了训练数据和预测数据。训练数据包括前1900个样本,存储在名为“input_train”和“output_train”的矩阵中。预测数据包括剩余的样本,存储在名为“input_test”和“output_test”的矩阵中。 然后,程序对输入数据进行了归一化处理,将其归一化到[-1,1]的范围内。归一化后的数据存储在名为“inputn”和“outputn”的矩阵中,归一化的参数存储在名为“inputps”和“outputps”的结构体中。 接下来,程序定义了神经网络的节点个数。输入层节点个数为输入数据的列数,隐含层节点个数为10,输出层节点个数为输出数据的列数。 然
2024-09-04 13:26:12 890KB matlab 神经网络
1
这是一个完整的机器人项目,包含算法仿真、机械结构设计、电子硬件设计、嵌入式软件设计、上位机软件设计等多个部分,完成了以下内容:使用 SolidWorks 完成的机械结构设计 基于 MATLAB / Simulink / Simscape 的算法设计和机器人物理仿真。基于 STM32,使用 CAN 通信的无刷电机驱动板。基于 ESP32、MPU6050 的运动控制模块(主控模块)。基于 ffmpeg / ffserver 的 Linux 图传模块,使用低耦合可拔插方案。支持蓝牙配网的 Android 遥控 APP。整个机器人项目被分成如下的几个部分,分别位于仓库不同目录下,内部有更详细的说明,读者可以按需查看:solidworks:机械结构设计,包含所有零件和总装配体模型文件 matlab:算法仿真,包含模型建立、算法设计和仿真文件等stm32-foc:无刷电机驱动板,包含硬件设计文件和STM32代码工程esp32-controller:运动控制模块,包含硬件设计文件和ESP32代码工程linux-fpv:Linux 图传模块,包含相关Shell脚本和Python脚本android:An
2024-09-03 14:37:13 60.25MB 软件工程 机器人
1
【文章概述】 本文主要探讨了基于改进遗传算法的FIR数字滤波器的优化设计。在数字信号处理领域,FIR滤波器因其稳定性、线性相位特性以及设计灵活性而广泛应用。然而,传统的设计方法如窗函数法、经验公式和Parks-McClellan算法各有不足,如无法满足多样需求、设计复杂或收敛速度慢。因此,研究人员转向使用遗传算法来优化FIR滤波器的设计。 【改进的遗传算法】 遗传算法是一种模拟生物进化过程的全局优化搜索算法,具有较强的鲁棒性。然而,标准遗传算法在寻找全局最优解时可能会陷入早熟现象,导致收敛速度慢。为了解决这一问题,文章提出了结合BP神经网络的改进遗传算法。这种结合方式利用了遗传算法的全局搜索能力和BP神经网络的局部搜索能力,有效地解决了大规模多极值优化问题,提高了算法的收敛速度和效果。 【FIR数字滤波器】 FIR数字滤波器是一种输出只与过去和现在输入相关的系统,其频率特性可以通过单位冲激响应表示。对于M阶线性相位FIR滤波器,存在特定的对称约束条件。滤波器的优化设计目标是使实际滤波器的频率特性H(w)接近理想滤波器的频率特性Hd(w),通常采用加权的切比雪夫最佳一致逼近准则。该准则通过误差加权函数W(w)来调整通带和阻带的逼近精度。 【优化过程】 文章描述了改进遗传算法在FIR滤波器设计中的具体实现步骤,包括随机生成初始种群,计算个体适应度,以及利用BP神经网络对非最优个体进行优化,生成新一代种群。这个过程不断迭代,直到满足预设的进化代数或误差阈值。 【总结】 通过对遗传算法的改进,结合BP神经网络,设计FIR数字滤波器的效率和精度得到了显著提升。这种方法不仅能够避免标准遗传算法的早熟问题,还能够快速找到接近全局最优的滤波器设计方案,适用于对时间要求严格的系统。这一研究为FIR滤波器设计提供了新的优化策略,对于数字信号处理领域的实践应用具有重要意义。
2024-09-02 19:53:17 105KB 遗传算法
1
EM(Expectation-Maximization,期望最大化)算法是一种在概率模型中寻找参数最大似然估计的迭代方法,常用于处理含有隐变量的概率模型。在本压缩包中,"em算法matlab代码-gmi高斯混合插补1"的描述表明,它包含了一个使用MATLAB实现的EM算法,专门用于Gaussian Mixture Imputation(高斯混合插补)。高斯混合模型(GMM)是概率密度函数的一种形式,由多个高斯分布加权和而成,常用于数据建模和聚类。 GMM在处理缺失数据时,可以作为插补方法,因为每个观测值可能属于一个或多个高斯分布之一。当数据有缺失时,EM算法通过不断迭代来估计最佳的高斯分布参数以及数据的隐含类别,从而对缺失值进行填充。 在MATLAB中实现EM算法,通常会包含以下步骤: 1. **初始化**:随机选择高斯分布的参数,包括均值(mean)、协方差矩阵(covariance matrix)和混合系数(weights)。 2. **期望(E)步**:利用当前的参数估计每个观测值属于每个高斯分量的概率(后验概率),并计算这些概率的加权平均值,用以更新缺失数据的插补值。 3. **最大化(M)步**:基于E步得到的后验概率,重新估计每个高斯分量的参数。这包括计算每个分量的均值、协方差矩阵和混合权重。 4. **迭代与终止**:重复E步和M步,直到模型参数收敛或者达到预设的最大迭代次数。收敛可以通过比较连续两次迭代的参数变化来判断。 在压缩包中的"a.txt"可能是代码的说明文档,解释了代码的结构和使用方法;而"gmi-master"很可能是一个文件夹,包含了实现EM算法和高斯混合插补的具体MATLAB代码文件。具体代码通常会包含函数定义,如`initialize()`用于初始化参数,`expectation()`执行E步,`maximization()`执行M步,以及主函数`em_gmi()`将这些步骤整合在一起。 学习和理解这个代码,你可以深入理解EM算法的工作原理,以及如何在实际问题中应用高斯混合模型处理缺失数据。这对于数据分析、机器学习和统计推断等领域都具有重要意义。通过阅读和运行这段代码,你还可以锻炼自己的编程和调试技能,进一步提升在MATLAB环境下的数据处理能力。
2024-09-02 17:35:58 149KB
1
AES(Advanced Encryption Standard)是一种广泛使用的块密码标准,用于数据加密和保护隐私。在MATLAB环境中实现AES加密和解密算法是一项重要的技能,特别是在教学和科研中。MATLAB2019a版本提供了丰富的数学计算功能,使得实现这种复杂的算法变得相对简单。 AES的核心过程包括四个基本操作:字节代换(SubBytes)、行位移(ShiftRows)、列混淆(MixColumns)和密钥扩展(KeyExpansion)。以下是对这些步骤的详细解释: 1. **字节代换**:AES使用了一个8x8的S盒(Substitution Box),将输入的8位字节替换为另一个非线性映射的字节。这个过程增强了算法的安全性,因为攻击者很难预测输入和输出之间的关系。 2. **行位移**:这是对矩阵的行进行循环位移,每一行的位移量不同,目的是增加数据混淆,使攻击者难以恢复原始信息。 3. **列混淆**:在MixColumns步骤中,每个4字节的列通过一个特定的线性变换进行混淆,这个变换是基于GF(2^8)的乘法运算。这个操作提高了加密的扩散性,使得一个位置的改变会影响整个数据块。 4. **密钥扩展**:AES的密钥长度可以是128、192或256位。密钥扩展算法将初始密钥扩展成足够多的轮密钥,每轮加密使用不同的密钥,增强安全性。 在提供的压缩包中,我们可以看到一些关键的MATLAB脚本文件: - `main.m`:这很可能是整个程序的主入口,它调用其他函数来执行AES的加密和解密过程。 - `cipher.m`:可能包含了执行AES核心操作的代码,如上述的四个步骤。 - `key_expansion.m`:专门处理密钥扩展的函数,根据AES标准生成后续轮的密钥。 - `mix_columns.m`:对应AES中的列混淆操作。 - `aes_demo.m`:示例程序,演示如何使用AES加密和解密数据。 - `aes_init.m`:可能包含了初始化函数,用于设置算法参数。 - `poly_mult.m`:可能涉及到GF(2^8)上的多项式乘法,这是列混淆操作的一部分。 - `cycle.m`:可能与密钥扩展中的循环操作有关。 在实际使用中,用户可以通过调用这些函数,传入原始数据和密钥,完成加密和解密任务。对于本科和硕士级别的学生,理解并实现这些算法有助于深入理解和掌握密码学原理,同时提高编程能力。在MATLAB环境中进行实验,可以方便地调试和分析算法的性能,对于学术研究和教育有着积极的意义。
2024-08-31 18:17:05 6KB matlab
1
混沌加密算法是一种结合了混沌理论和密码学的高级加密技术,因其复杂性和不可预测性而被广泛研究。在本项目中,我们关注的是基于约瑟夫环(Josephus Problem)的混沌加密算法在MATLAB平台上的仿真实现。MATLAB是一款强大的数学计算软件,非常适合进行复杂的数值模拟和算法开发。 约瑟夫环是一个著名的理论问题,它涉及到在循环结构中按一定规则剔除元素的过程。在加密领域,约瑟夫环的概念可以被巧妙地利用来生成非线性的序列,这种序列对于密码学来说是非常有价值的,因为它可以增加破解的难度。 混沌系统是那些表现出极端敏感性对初始条件的系统,即使微小的变化也会导致结果的巨大差异。混沌理论在加密中应用时,可以生成看似随机但实际上由初始条件控制的序列,这使得加密过程既具有随机性又保留了可逆性,是加密算法设计的理想选择。 在这个MATLAB实现中,`test.m`可能是主函数,用于调用并测试加密算法。`yuesefu.m`很可能是实现约瑟夫环混沌加密算法的具体代码,包括混沌系统的定义、约瑟夫环的操作以及数据的加密和解密过程。文件`1.wav`则可能是一个示例音频文件,用于演示加密算法的效果,将原始音频数据经过加密处理后再解密,以验证算法的正确性和安全性。 混沌加密算法的基本步骤通常包括: 1. **混沌映射**:选择一个混沌映射,如洛伦兹映射或 Logistic 映射,通过迭代生成混沌序列。 2. **密钥生成**:混沌序列与初始条件密切相关,因此可以通过精心选择初始条件和参数来生成密钥。 3. **数据预处理**:将原始数据转换为适合混沌加密的形式,如二进制表示。 4. **加密过程**:将混沌序列与待加密数据进行某种操作(如异或)来混淆数据。 5. **约瑟夫环应用**:在加密过程中引入约瑟夫环,可能通过剔除或替换某些元素来进一步增强加密强度。 6. **数据解密**:使用相同的密钥和算法,通过逆操作恢复原始数据。 7. **安全性和性能评估**:通过各种密码分析方法(如差分分析、线性分析等)评估加密算法的安全性,并测试其在不同数据量下的运行效率。 这个MATLAB实现提供了一个理解和研究混沌加密算法的良好平台,同时也为其他领域的研究人员提供了实验和改进的基础。用户可以通过修改`yuesefu.m`中的参数和初始条件,探索不同的混沌行为和加密效果,以优化算法的性能和安全性。
2024-08-31 18:09:14 135KB matlab 约瑟夫环
1
CSDN海神之光上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函数:VoiceRecognition.m; Fig:GUI操作界面; 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到 Matlab的当前文件夹中; 步骤二:双击打开VoiceRecognition.m文件;(若有其他m文件,无需运行) 步骤三:点击运行,等程序运行完得到结果; 4、语音处理系列仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 语音处理系列程序定制或科研合作方向:语音隐藏、语音压缩、语音识别、语音去噪、语音评价、语音加密、语音合成、语音分析、语音分离、语音处理、语音编码、音乐检索、特征提取、声源定位、情感识别、语音采集播放变速等; CSDN海神之光上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函
2024-08-31 17:57:04 316KB matlab
1
项目背景与目的 现代家用电器,特别是冰箱,已经不仅仅是简单的食品存储设备,它们逐渐集成了更多的智能化功能。随着物联网(IoT)技术的发展和智能家居的普及,如何提升冰箱的制冷和加热效率、稳定性以及用户体验,成为家电行业的重要课题。基于PID(Proportional-Integral-Derivative)算法的冰箱制冷加热项目旨在通过精确的温度控制,优化冰箱的性能,提高能效,提供更优质的用户体验。 本项目的主要目的是: 温度精确控制:通过引入PID算法,实现对冰箱内部温度的精确控制,确保食品保鲜效果和节能。 智能调节:根据用户需求和外部环境的变化,智能调整制冷和加热模式,提高冰箱的适应性和效率。 数据监控与分析:实时监控冰箱的运行状态,通过数据分析优化控制策略,提升系统的稳定性和可靠性。
2024-08-31 09:09:49 2.95MB
1