Logistic回归 该存储库专用于物流回归。 它的实现简单,带有真实数据集和阅读材料的编码示例。
2022-01-13 10:57:39 24KB JupyterNotebook
1
主要介绍了python代码实现逻辑回归logistic原理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2022-01-05 15:45:53 175KB python 逻辑回归logistic
1
Logistic回归预测收入----台大李宏毅机器学习作业2(HW2)-附件资源
2021-12-31 22:16:34 106B
1
影响个人信用的因素很多。 将套索技术引入个人信用评估,分别建立套索逻辑,套索支持向量机和组套索逻辑模型。 变量选择和参数估计也同时进行。 根据某贷款平台的个人信用数据集,可以通过实验得出结论,与全变量Logistic模型和逐步Logistic模型相比,Group Lasso-Logistic模型的变量选择能力最强,其次是套索物流和套索SVM。 这三个基于套索变量选择的模型都具有比逐步选择更好的过滤能力。 同时,组套索逻辑模型可以消除或保留相关的虚拟变量作为一个组,以方便模型解释。 在预测准确性方面,Lasso-SVM在训练集中对默认用户的预测准确性最高,而在测试集中,Group Lasso-logistic对默认用户的分类准确性最高。 无论是在训练集中还是在测试集中,套索逻辑模型对于非默认用户都具有最佳分类精度。 基于套索变量选择的模型还可以更好地筛选出影响个人信用风险的关键因素。
1
为了方便付款和无分类,如今信用卡付款已变得非常流行。 从我们的银行帐户中,我们可以直接在线支付款项。 尽管采用这种简单的付款方式,但它仍具有欺诈的缺点。 未授权人员访问其他人的银行详细信息称为入侵者。 这些入侵者还可以访问一些未经授权的交易。 为了防止这种情况,我们需要一些强大的机制。 在本文中,我们使用了三种不同的分类算法(逻辑回归,随机森林和支持向量)进行欺诈检测,并将发现这三种算法的准确性比较。
2021-12-24 13:08:01 729KB Credit card fraud Classification
1
logistic回归算法java实现,完整的代码,以及完整的数据集,可代码正常,可以正常运行,该实例简单易懂,适合初学者进行参考以及学习。
2021-12-21 19:01:36 8KB logistic 二分类 逻辑回归
1
基于Logistic增长模型的微信公众号数量预测研究,吴宇航,阎少宏,根据微信公众号详细类型的相似属性,可将微信公众号划分为资讯类、生活类、娱乐类和其他类四个领域,通过对指数增长模型和Logistic�
2021-12-19 19:39:51 679KB 首发论文
1
基本ML算法 最近邻居 逻辑回归 线性回归 朴素贝叶斯 K均值聚类
2021-12-15 22:34:33 1.89MB JupyterNotebook
1
资源中包含逻辑回归算法的Python代码和测试数据,python的版本为3.6,您运行代码前,将测试文件路径修改为您本地的存储路径,使用pycharm平台运行即可。
1
NBA预测 使用Python中的Logistic回归模型预测NBA比赛 模型 该模型使用从stats.nba.com刮取的八个因素来确定NBA游戏的预测结果。 每个统计数据都调整为每100个回合,以确保速度不会影响预测。 主队 胜率 篮板 营业额 正负 进攻等级 防守等级 真实投篮命中率 用法 安装 pip3 install -r requirements.txt 每日预测 打开nbaPredict.py 编辑对makeInterpretPrediction的调用,其中包含所需的比赛日期,赛季以及赛季的开始日期 通过终端或IDE运行程序 等待约1-3分钟,模型即可完成抓取统计信息并预测结果 输出结果作为主队击败客队的机会百分比 过去的预测 打开makePastPredictions.py 使用所需的开始日期,结束日期,季节,季节的开始日期和输出文件名来编辑对makePastPredictions的调用。 注意:开始日期应至少在季节开始后三天,且结束日期不包括在内。 通过终端或IDE运行程序 两个CSV文件将保存在Data文件夹中。 一个保存游戏数据,另一个保存游戏的预测。
2021-12-12 17:09:42 441KB python nba data-science model
1