手语检测数据VOC+YOLO格式9648张80类别,这个数据的特点在于其规模和格式。它包含了9648张jpg格式的图片,并且这些图片都配有对应的标注文件,包括VOC格式的xml文件和YOLO格式的txt文件。VOC格式广泛应用于目标检测领域,而YOLO格式则因其速度快、效率高而受到许多研究者的青睐,两者结合使得该数据能够同时满足学术研究和工程实践的需求。 数据包含了80种不同的手语类别,涵盖了人们在日常交流中常见的手势。这些手语类别具有广泛性和实用性,例如包含了食物、饮料、餐具、支付方式、日常问候等类别。每个手势类别都有相应的标注信息,包括了该类别在图片中的具体位置,以框的形式表现出来。这种详细而具体的标注方式,对于机器学习和深度学习模型的训练来说是非常重要的,它能够帮助模型准确学习和识别各种手势。 具体到每个类别的标注框数量,例如"additional"类别有133个框,"alcohol"类别有107个框,直到"what"类别,每个类别都明确标注了具体数量。标注框的数量在一定程度上反应了该手势类别的复杂性和出现频率,这对于评估模型在不同类别的检测准确性和泛化能力尤为重要。 此外,数据的标注类别名称详细列举了所有80个类别,而且特别注明了YOLO格式类别顺序不是按照列表顺序,而是以labels文件夹中的classes.txt文件为准。这样的说明使得使用该数据的研究者或开发者可以明确了解如何使用标注信息,确保模型的训练过程准确无误。 这个手语检测数据的详细信息包括图片和标注的数量、格式和类别名称等,为进行手语识别、手势检测研究的专业人士提供了宝贵的资源。通过使用这个数据,可以开发出更准确、高效的模型,进而推动手语识别技术的发展,让听障人士在与他人交流时获得更便捷的技术支持。
2025-11-02 13:52:14 1.56MB 数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144196612 文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 数据格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):6042 标注数量(xml文件个数):6042 标注数量(txt文件个数):6042 标注类别数:21 标注类别名称:["Arrester body","Arrester voltage equalizing ring","Breaker","Breaker connector","Breaker support insulator","Casing connector","Casing general hat","Casing porcelain sleeve","Casing pressure equalizing ring","Current transformer connector","Current transforme
2025-11-01 14:52:27 407B 数据集
1
《基于YOLOv8的智慧农场虫情测报灯监测系统》是一套结合了深度学习技术的先进监测系统,其研发背景源于现代农业对于虫害监测与管理的需求。该系统以YOLOv8(You Only Look Once version 8)模型为核心,YOLOv8作为最新一代的目标检测算法,以其高速度和高精度在目标检测领域中备受瞩目。在智慧农场的背景下,该系统能够有效识别并监测农田中的昆虫活动,对于精准农业具有重要价值。 本系统的核心特点在于其简单易用、功能完善且操作简便。它包括了源代码、可视化的用户界面、完整的数据以及详细的部署教程,这一切使得无论是本科生的毕业设计还是课程设计,都能轻松上手并快速实现一个功能齐全的虫情监测系统。 文件名称列表中的README.txt文件很可能是整个项目的使用说明文档,里面包含了系统部署前的准备工作、安装步骤、运行环境配置以及系统使用指南等关键信息。这个文档对于用户来说至关重要,因为它决定了用户能否顺利搭建和运行整个监测系统。 “基于YOLOv8的智慧农场虫情测报灯监测系统903b3438b7a34394896852d532fddc44.txt”可能是一份包含了项目详细开发文档的文件,其中可能包含了系统设计思路、架构图、功能描述、算法细节等内容,为研究者和开发者提供了深入了解和进一步开发的资料。 “可视化页面设计”则可能指向系统中的前端用户界面部分,这部分通常设计得直观易用,方便农场管理者或者其他用户通过图形化界面查看虫情监测结果和统计数据。良好的可视化设计不仅提高了用户体验,还有助于用户快速作出管理决策。 “模型训练”表明项目中应该包含了用于训练YOLOv8模型的代码和数据,这部分是整个系统实现智能监测能力的基础。通过有效的数据和训练流程,系统得以不断优化检测精度和响应速度,以满足实际应用场景中对准确性和实时性的高要求。 此外,整个系统在部署时要求的简单性意味着开发者已经将其封装得非常易于安装和配置,用户无需对深度学习或计算机视觉有深入的了解,只需按照教程步骤操作,即可将整个系统部署在指定的硬件环境中,这对于推广智慧农业技术具有积极的意义。 《基于YOLOv8的智慧农场虫情测报灯监测系统》是一个成了最新深度学习技术、界面友好、操作简单且功能强大的监测工具。它不仅能够帮助农业管理者及时获取虫害信息,而且为未来农业信息化提供了新的技术路径。对于高校学生而言,该系统则是一个不可多得的学习和研究资源,有助于学生理论与实践相结合,为将来的职业生涯打下坚实的基础。
2025-10-31 17:00:08 24.21MB
1
内含各种砖混结构加固图纸,有1.1 地基基础加固,1.2 柱加固,1.3 墙体加固,1.4 梁加固,1.5 楼板加固,1.6 结构整体性加固,1.7 悬挑阳台加固,1.8 出屋面小房间加固,1.9 出屋顶烟囱加固等图纸。
2025-10-31 14:53:01 7.44MB 建筑图集CAD
1
1.本项目基于网络开源平台Face++ . API,与Python 网络爬虫技术相结合,实现自动爬取匹配脸型的发型模板作为造型参考,找到最适合用户的发型。项目结合了人脸分析和网络爬虫技术,为用户提供了一个个性化的发型推荐系统。用户可以根据他们的脸型和偏好来寻找最适合的发型,从而更好地满足他们的美容需求。这种项目在美容和时尚领域具有广泛的应用潜力。 2.项目运行环境:包括 Python 环境和Pycharm环境。 3.项目包括4个模块: Face++ . API调用、数据爬取、模型构建、用户界面设计。Face++ . API可检测并定位图片中的人脸,返回高精度的人脸框坐标,只要注册便可获取试用版的API Key,方便调用;通过Selenium+Chrome无头浏览器形式自动滚动爬取网络图片,通过Face++性别识别与脸型检测筛选出用发型模板,图片自动存储指定位置并按性别、脸型序号形式命名。模型构建包括库函数调用、模拟用户面部图片并设定路径、人脸融合。 4.项目博客:https://blog.csdn.net/qq_31136513/article/details/132868949
2025-10-31 14:12:44 112.24MB face++ 图像识别 图像处理 人脸识别
1
VOC2007数据是计算机视觉领域中一个经典的目标检测数据,由英国剑桥大学Visual Object Classes (VOC)挑战赛提供。这个数据广泛用于算法开发和性能评估,尤其是对于目标检测任务。它包含了大量的图像,每个图像都标注了多个对象的边界框和类别信息,为研究者提供了丰富的实验材料。 目标检测是计算机视觉中的一个重要任务,旨在在图像或视频中识别并定位出特定的对象。VOC2007数据的设计就是为了推动这一领域的发展,它包含了20个不同的类别,如人、自行车、狗、飞机等,这些类别覆盖了日常生活中常见的物体。 该数据分为训练和验证两部分。训练用于训练机器学习模型,让模型学习如何识别和定位目标对象。而验证则用于在模型训练过程中进行中期评估,帮助研究人员了解模型在未见过的数据上的表现,以便调整模型参数或改进算法。 VOC2007数据的组织结构相当规范,主要包含以下部分: 1. 图像(Images):存放原始的JPEG格式图像文件。 2. 预处理信息(Annotations):XML文件包含了每张图像的注释信息,包括对象的边界框坐标、类别标签以及对象的数量。 3. ImageSets:该目录下的文件指定了训练和验证的具体图像列表,通常会有一个文本文件列出属于每个合的图像ID。 4. SegmentationClass和SegmentationObject:这两个子目录分别存储了像素级别的分类掩码和对象掩码,有助于语义分割和实例分割任务。 5. VOC2007.tar:这是一个压缩文件,包含了VOC2007数据的所有内容,包括上述提到的各种文件和目录。 使用VOC2007数据进行目标检测时,通常涉及以下步骤: 1. 数据预处理:解析XML注释文件,将图像和对应的边界框信息加载到内存中。 2. 模型训练:采用深度学习框架,如TensorFlow或PyTorch,利用训练构建模型,并通过反向传播优化模型参数。 3. 验证与调优:使用验证评估模型性能,通过精度、召回率、平均精度均值(mAP)等指标进行衡量,根据结果调整模型参数。 4. 测试:最终在未标注的测试上进行测试,以评估模型的泛化能力。 VOC2007数据不仅促进了目标检测技术的进步,还催生了许多经典的深度学习模型,例如R-CNN、Fast R-CNN和Faster R-CNN。随着时间的推移,虽然出现了更大型的数据,如COCO,但VOC2007因其规模适中、标注精确,仍被广泛用作基准测试和算法开发。
2025-10-31 13:32:21 425.26MB 目标检测
1
样本图参考:blog.csdn.net/2403_88102872/article/details/143498506,文件太大放服务器了,请先到资源详情查看然后下载 重要说明:数据有部分是增强的,就是4张图片拼接成一张的,请查看图片预览,确认符合要求再下载 数据格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4629 标注数量(xml文件个数):4629 标注数量(txt文件个数):4629 标注类别数:4 标注类别名称:["Heavy Damage","Minor Damage","Moderate Damage","Undamage"]
2025-10-31 11:12:46 407B 数据集
1
yolov5/yolov8/yolo11/yolo目标检测数据,人爬墙识别数据及训练结果(含yolov8训练结果与模型),1016张标注好的数据(2类别,划分好的训练,验证和测试、data.yaml文件),开箱即用 2个类别:没爬墙,在爬墙。 效果参考展示:https://blog.csdn.net/m0_37302966/article/details/151864777 更多资源下载:https://blog.csdn.net/m0_37302966/article/details/146555773
2025-10-30 17:10:49 122.32MB yolov5数据集 yolo数据集
1
高效特征波长筛选与数据聚类算法合:CARS、SPA、GA等结合PCA、KPCA与SOM技术,光谱代分析与预测建模专业服务,特征波长筛选与数据聚类算法萃:从CARS到SOM的通用流程与光谱分析服务,特征波长筛选算法有CARS,SPA,GA,MCUVE,光谱数据降维算法以及数据聚类算法PCA,KPCA,KNN,HC层次聚类降维,以及SOM数据聚类算法,都是直接替数据就可以用,程序内有注释,直接替光谱数据,以及实测值,就可以做特征波长筛选以及数据聚类,同时本人也承接光谱代分析,光谱定量预测分析建模和分类预测建模 ,CARS; SPA; GA; MCUVE; 光谱数据降维算法; 数据聚类算法; 程序内注释; 光谱代分析; 定量预测分析建模; 分类预测建模,光谱数据处理与分析工具:算法成与模型构建服务
2025-10-30 12:12:06 1.49MB sass
1
《深入理解Android系统合》是一部专为Android开发者和爱好者准备的深度学习资料,涵盖了Android Framework的学习入门。这个合由邓凡平编著,分为两卷,分别为《深入理解Android 卷1》和《Android(卷2)(带全目录完整版)邓凡平》。这两部作品旨在帮助读者全面理解Android系统的底层机制,尤其是其核心组件——Framework。 **卷一:深入理解Android 卷1** 在《深入理解Android 卷1》中,作者首先介绍了Android系统的基础架构,包括Linux内核层、系统库层和应用程序框架层。这一部分详细讲解了Android如何基于Linux实现其特有的系统服务,以及如何通过JNI与C/C++库进行交互。此外,卷一还深入探讨了Dalvik和ART虚拟机的工作原理,这是Android应用运行的关键。 接着,卷一重点讲述了Activity Manager、Content Provider、Intent、Broadcast Receiver和Service等核心组件的实现机制。这些组件是构建Android应用程序的基础,理解它们的工作方式对于开发高效且稳定的App至关重要。书中还包含了关于Android资源管理、权限控制和UI布局设计等方面的知识,这些都是开发者日常工作中经常遇到的问题。 **卷二:Android(卷2)(带全目录完整版)邓凡平** 在第二卷中,作者进一步深化了对Android Framework的理解,包括窗口管理、图形渲染、网络通信、多媒体支持以及硬件访问等方面。这一部分详细阐述了如何在Android系统中处理用户界面的创建和管理,以及如何利用OpenGL ES进行高性能的图形渲染。 卷二还特别关注了Android的网络编程,如HTTP请求、WebSocket通信以及数据序列化与反序列化。这对于开发涉及网络功能的应用来说极其重要。同时,邓凡平还讲解了Android如何处理多媒体数据,包括音频、视频的编码解码以及相机接口的使用,这对于开发多媒体应用提供了理论基础。 除此之外,卷二还涉及到了Android系统的安全性和性能优化,包括数据加密、内存管理、CPU调度以及电量优化策略等,这些都是提升应用质量和用户体验的关键因素。 总结来说,《深入理解Android系统合》是Android开发者进阶的必备读物,它不仅提供了对Android Framework的深入解析,还涵盖了Android开发的各个方面,从基础到高级,从理论到实践,帮助读者全面提高Android开发技能,为成为一名专业的Android工程师打下坚实基础。通过系统地学习这两卷书,读者将能够更深入地理解Android系统的运行机制,从而在实际开发中游刃有余。
2025-10-29 22:19:04 68.28MB Framework android
1