纯电动汽车两档ATM变速箱Simulink模型:详细注释与文档支持,实现换挡策略与过程仿真,可运行体验,纯电动汽车两档ATM变速箱Simulink模型详解:仿真换挡策略与过程,含文档及注释模型,可运行体验版,纯电动汽车两档ATM变速箱simulink模型,模型实现了两档AMT挡策略和挡过程仿真,内含详细文档和注释模型,可运行 ,核心关键词:纯电动汽车; 两档ATM变速箱; simulink模型; AMT换挡策略; 换挡过程仿真; 详细文档; 注释模型; 可运行,纯电两档AMT变速箱Simulink模型:换挡策略与过程仿真分析
2025-06-24 10:13:13 3.9MB gulp
1
基于Cadence 618的两级运算放大器电路版图设计(低频增益达87dB,GBW 30MHz,详尽原理图及仿真过程),基于Cadence 618的两级运算放大器电路版图设计,涵盖工艺细节、仿真及安装指南,详尽设计文档和仿真报告,低频增益达87dB,单位增益带宽积GBW 30MHz。,两级运算放大器电路版图设计 cadence 618 电路设计 版图设计 工艺tsmc18 低频增益87dB 相位裕度80 单位增益带宽积GBW 30MHz 压摆率 16V uS 有版图,已过DRC LVS,面积80uX100u 包安装 原理图带仿真过程,PDF文档30页,特别详细,原理介绍,设计推导,仿真电路和过程仿真状态 ,两级运算放大器; 电路版图设计; 工艺tsmc18; 性能指标(低频增益、相位裕度、GBW、压摆率); 版图; DRC LVS验证; 面积; 包安装; 原理图; 仿真过程; PDF文档。,基于TSMC18工艺的87dB低频增益两级运算放大器版图设计及仿真研究
2025-06-22 22:27:54 5.6MB
1
内容概要:本文详细介绍了利用COMSOL 5.6对固态电池进行二维仿真的研究。首先阐述了固态电池作为新兴电池技术受到广泛关注的背景,以及COMSOL 5.6在这一领域的优势。接着具体描述了所建二维模型的特点,包括其能模拟固态电池的二维结构、电子传输、界面反应等重要过程,并考虑了电池的组成材料、电极结构、电解质等因素。随后,文章深入分析了仿真的全过程,从材料模拟到仿真参数设置再到最终结果解读,展示了如何通过调整参数来获得关于固态电池性能(如能量密度、充电速度)的关键信息。最后,指出了该模型在固态电池研究中的广泛应用前景。 适用人群:从事电池技术研发的专业人士,尤其是关注固态电池方向的研究人员和技术爱好者。 使用场景及目标:适用于希望深入了解固态电池内部机制并借助仿真手段优化电池设计的研究项目。目标是掌握COMSOL 5.6在固态电池仿真方面的应用方法,提高对固态电池特性的认识水平。 其他说明:文中还列出了若干参考文献供进一步学习查阅。
2025-06-19 17:26:37 616KB
1
元胞自动机模拟晶粒生长 熔池微观组织演变,模拟枝晶,晶粒生长,合金凝固,熔池模拟 单个等轴晶生长 柱状晶生长模拟 焊接熔池合金凝固(可耦合温度场)元胞自动机模拟(CA)动态再结晶过程,晶粒大小,动态再结晶,Comsol 锂枝晶生长模型,锂枝晶生长,锂离子浓度分布,电势分布 元胞自动机(CA)是一种离散的数学模型,用于模拟和分析复杂的动态系统。在材料科学领域,CA被广泛应用于模拟晶粒生长和熔池微观组织的演变过程。这些模拟对于理解合金凝固过程、枝晶生长机制以及焊接熔池中合金的凝固行为具有重要意义。元胞自动机模型通过定义一组简单的局部规则,能够模拟出复杂的全局现象,这一特性使其成为研究微观组织演变的有效工具。 元胞自动机模拟晶粒生长时,可以详细展现熔池中的微观组织演变,包括等轴晶和柱状晶的生长过程。这些模拟能够帮助研究者预测晶粒的大小、形态以及分布情况,这对于控制材料的微观结构和最终性能至关重要。元胞自动机模拟技术还可以分析晶粒生长与熔池微组织演变的关系,深入探索熔池合金凝固的机制。 在焊接过程中,焊接熔池合金的凝固行为是影响焊接接头性能的关键因素之一。通过耦合温度场的元胞自动机模拟,可以更准确地预测焊接熔池中合金的凝固过程和晶粒生长情况,从而优化焊接工艺参数,提高焊接质量。 动态再结晶过程是材料加工中常见的一种微观组织演变现象,它对材料的力学性能有着显著的影响。元胞自动机模拟技术可以用来分析动态再结晶过程中晶粒尺寸的变化,以及再结晶动力学行为。这对于改善材料加工工艺、提升材料性能具有重要的实际应用价值。 锂枝晶生长是锂离子电池中一个重要的现象,它直接关系到电池的循环稳定性和安全性。利用元胞自动机模拟锂枝晶生长,可以研究锂离子浓度分布和电势分布对枝晶生长的影响,为锂离子电池的材料设计和结构优化提供理论指导。 元胞自动机作为一种强大的模拟工具,在模拟晶粒生长、熔池微观组织演变以及焊接熔池合金凝固等方面展现出巨大的应用潜力。通过计算机模拟,可以在不破坏材料的前提下,深入探索材料的微观结构和性能之间的关系,为材料科学的研究和发展提供了新的视角和方法。
2025-06-19 15:59:44 99KB csrf
1
HyperStudy工作过程 Parameterized input file for HyperStudy Optimization DOE Stochastic Postprocess
2025-06-19 11:38:12 1.58MB hyperstudy
1
过程控制课程设计主要关注单回路控制系统的调节器参数自动整定方法,旨在让学生了解并实践这一重要控制策略。在设计任务中,学生需要研究分析调节器参数整定的理论方法,尤其是衰减曲线法,并通过编程实现对任意被控对象的参数自动整定。 衰减曲线法是一种在不允许等幅振荡情况下选择的方法,它要求系统过渡过程为4:1震荡。该方法的具体步骤包括: 1. 设置控制器的积分时间Ti为无穷大,微分时间Td为零,比例带δ设定为较大值。 2. 系统进入闭环运行,施加阶跃扰动,观察控制过程。如果过渡时间的衰减率φ大于要求值,则逐步减小比例带值,直至出现φ=0.75或φ=0.9的衰减曲线。 3. 记录此时的比例带δs,根据衰减曲线计算出衰减周期Ts或上升时间tr。 4. 将计算得到的参数应用到控制系统中,调整参数直至获得满意的控制效果。 在设计过程中,学生需要设计一套完整的调节器参数自动整定程序。例如,通过P控制、PI控制和PID控制,观察delat数值接近4:1时的控制效果。P控制主要调整比例控制的放大系数Kp,以平衡干扰屏蔽和稳定性。PI控制引入积分作用,可能会降低系统的稳定性,而PID控制通过引入微分作用,能提高稳定性,允许适当降低比例带。 软件构建部分,学生使用MATLAB的GUI界面来开发单回路控制系统,验证调节器参数整定后的控制性能。通过输入传递函数,可以模拟不同控制策略(如P、PI、PID)下的阶跃响应图,进一步分析各参数对系统性能的影响。 考核方式结合了课程设计报告、设计内容演示和答辩,全面评估学生的考勤、纪律、报告质量、编程能力和基本概念理解。这样的设计不仅锻炼了学生的理论分析能力,也提升了他们的实践操作技能,对于理解和掌握过程控制系统有极大帮助。
2025-06-17 15:37:14 208KB
1
CST可调谐太赫兹超材料吸收器仿真教学,石墨烯,二氧化钒,锑化铟等材料设置 包括建模过程,后处理,吸收光谱图教学等 包括宽带吸收器、窄带,以及宽窄带吸收器设计 ,CST仿真; 可调谐太赫兹超材料吸收器; 石墨烯; 二氧化钒; 锑化铟; 建模过程; 后处理; 吸收光谱图教学; 宽带吸收器设计; 窄带吸收器设计; 宽窄带吸收器设计。,CST太赫兹超材料吸收器教学:材料设置与仿真解析 太赫兹波段处于微波与红外线之间,具有独特的物理性质,近年来成为材料科学和电子工程领域的研究热点。在这一波段,超材料因其具有调整光波传播特性的能力而受到广泛关注,特别是在吸收器设计方面,超材料展现出极大的应用潜力。太赫兹超材料吸收器可以实现对太赫兹波的吸收,并且通过特定的设计使其在特定频率下具有高吸收率,这在隐身技术、太赫兹成像、通信系统等领域有重要的应用价值。 CST(Computer Simulation Technology)是一种强大的电磁场仿真软件,广泛应用于电子设备的模拟与分析。利用CST进行太赫兹超材料吸收器的仿真教学,可以有效地帮助学习者理解超材料的物理机制和设计方法。在仿真教学中,会涉及对不同材料的设置,例如石墨烯、二氧化钒和锑化铟等,这些材料因其独特的电磁特性而被选中。通过CST软件,用户可以构建吸收器模型,进行后处理分析,并最终获得吸收光谱图。 在设计过程中,可以实现宽带和窄带的太赫兹吸收器设计,甚至设计出能在较宽和较窄频率范围内都具备高效吸收性能的吸收器。这些设计对于实现更精确的太赫兹波段电磁波控制具有重要意义。在教学中,将会详细讲解如何通过改变材料参数、结构尺寸以及层叠顺序等方式来优化吸收器的性能。 超材料吸收器设计的关键步骤包括建模、仿真计算和结果分析。建模过程中需要精确设置材料参数和几何结构,以确保仿真结果的可靠性。仿真计算则依赖于电磁场仿真软件,如CST,它可以计算出材料对电磁波的响应特性。结果分析阶段主要是通过后处理工具来解析仿真数据,获得吸收光谱图等关键信息,进而评估吸收器的设计性能。 文档名称列表中提到的“文章标题可调谐太赫兹超材料吸收器的仿真教学”可能是对整个教学内容的一个概述,而“基于仿真的太赫兹超材料吸收器设计教学一引言在”可能是指某个具体教学模块的引言。其他的文件名则表明教学内容涵盖了从理论到实践的各个方面,包括对吸收器设计的具体步骤和方法的介绍。 此外,教学内容还涉及了对太赫兹超材料吸收器设计的详细讲解,从建模到光谱设计,使得学习者能够全面掌握从理论到实践的整个设计过程。教学内容不仅包含理论讲解,还包括实际操作演练,帮助学习者加深理解,并能够独立进行太赫兹超材料吸收器的设计。 图片文件如“2.jpg”、“4.jpg”和“3.jpg”可能是教学过程中使用的辅助图表或模型示意图,有助于直观展示设计要点和仿真结果,使学习者更容易理解和吸收课程内容。通过这些视觉辅助,学习者可以更好地把握太赫兹超材料吸收器的设计与实现过程
2025-06-16 18:50:08 1.98MB 哈希算法
1
VDA6.3过程审核2023版英文版下载,VDA6.3 2023版2023年1月已经发布,新版相对旧版VDA6.3有不少差异,但是也保持了很多一致的方式方法,有哪些内容是没有变化的呢? 接下来为大家一一说明 1、什么保持不变? 2、整体评价的分类系统(A、B、C) 3、提问表结构 4、单个问题的评分模型(10-8-6-4-0) 5、过程要素P2-P7的适用性,根据图2-1 6、乌龟图模型 7、以前的降级规则 本次修订期间,再次明确考虑了过程审核与体系审核的区别。IATF的现行要求已得到遵守。 对于集成(嵌入式)软件的产品,加强了硬件和软件之间的接口。但软件开发的详细评估,应使用 Automotive SPICE方法。 鉴于所做的更改,按本卷实施的审核结果不能与基于之前2016版进行的审核结果直接比较。 VDA 6.3过程审核是德国汽车工业协会(Verband der Automobilindustrie, 简称VDA)制定的一项质量管理体系评审标准,特别针对产品和生产过程的开发及实施。2023版的更新旨在适应行业变化和技术进步,确保其持续的有效性和相关性。 1. **保持不变的内容** - 整体评价的分类系统:仍然采用A、B、C的分类方式来评估过程的成熟度和改进需求。 - 提问表结构:新版VDA 6.3保持了原有的问题框架,以便于审核员进行系统的评估。 - 单个问题的评分模型:依然沿用10-8-6-4-0的评分标准,评估过程中各项指标的符合程度。 - 过程要素P2-P7的适用性:这七个过程要素(如规划、设计、实施等)继续作为审核的核心部分。 - 乌龟图模型:这是一种用于分析过程因素(人、机器、材料、方法、环境)的工具,它在新版中仍然被保留。 2. **变化与强化** - 区分过程审核与体系审核:新版进一步明确了两者之间的区别,确保审核更加聚焦于具体过程的质量表现。 - 集成软件的考量:对于包含集成(嵌入式)软件的产品,新版本强调了硬件与软件接口的重要性,并推荐使用Automotive SPICE方法评估软件开发的详细程度。 - 不兼容性:2023版的实施结果不能直接与基于2016版的审核结果进行比较,因为两者存在显著差异。 3. **责任与版权** - VDA推荐标准:VDA建议其成员使用该标准实施和维护质量管理系统,但使用者需自行确保正确应用并承担相应责任。 - 版权声明:未经VDA许可,任何超出版权法规定的使用都是不允许的,并可能面临法律追责。 - 错误与改进:若发现错误或可能的误解,用户应及时通知VDA以纠正。 4. **适用性** - VDA 6.3过程审核适用于整个汽车行业,不仅用于识别和改进生产过程中的弱点,还用于监控和提高产品质量。通过全面的过程分析和评价,企业可以系统地提升其质量管理能力,确保符合不断发展的IATF(国际汽车任务组)要求。 VDA 6.3过程审核2023版在保留原有核心内容的同时,对软件开发和过程审核与体系审核的区分进行了强化,以应对汽车行业日益复杂的挑战。企业应理解这些变更,以便有效地运用新版本标准进行内部审核和质量提升。
2025-06-16 11:02:42 29.62MB VDA6.3 质量管理 汽车行业
1
2019年,华南理工大学,《随机过程》考试大纲
2025-06-13 11:01:58 1.94MB
1
TCP(Transmission Control Protocol)是一种面向连接的、可靠的传输层协议,它是互联网协议栈中的关键组件。在TCP中,为了确保两个通信端点之间可靠的数据传输,必须先建立一个连接,这个过程被称为“三次握手”。而当数据传输完成后,还需要一个断开连接的过程,即“四次挥手”。 三次握手是TCP连接建立的过程,它确保了双方都有能力发送和接收数据。以下是三次握手的详细步骤: 1. 第一次握手:客户端向服务器发送一个SYN(同步序列号)包,其中包含了客户端随机选择的初始序列号ISN。此时,客户端进入SYN_SENT状态。 2. 第二次握手:服务器收到SYN包后,回应一个SYN+ACK包,确认客户端的序列号,并发送自己的SYN,同时设置自己的ISN。服务器进入SYN_RECV状态。 3. 第三次握手:客户端接收到服务器的SYN+ACK包后,再次发送一个ACK(确认)包,确认服务器的序列号。此时,客户端进入ESTABLISHED状态。当服务器收到这个ACK后,也进入ESTABLISHED状态,至此,TCP连接建立完成。 四次挥手是TCP连接断开的过程,目的是确保双方都已知道对方不再需要连接,防止数据丢失或重复发送。以下是四次挥手的详细步骤: 1. 第一次挥手:主动关闭方(假设是客户端)发送一个FIN(结束)包给被动关闭方(服务器),表示自己已经没有数据要发送,请求断开连接。客户端进入FIN_WAIT_1状态。 2. 第二次挥手:服务器收到FIN包后,发送一个ACK包,确认客户端的FIN。服务器进入CLOSE_WAIT状态,表示它已经知道了客户端想要关闭连接,但可能还有数据需要发送。 3. 第三次挥手:服务器如果没有任何数据需要发送,会发送一个FIN包给客户端,请求断开连接。服务器进入LAST_ACK状态,等待客户端的确认。 4. 第四次挥手:客户端收到服务器的FIN包后,发送一个ACK包作为确认,然后进入TIME_WAIT状态。此状态下,客户端等待足够的时间以确保服务器收到其ACK,以防重传。服务器收到ACK后,进入CLOSED状态,连接正式关闭。客户端在等待一段时间后,也会进入CLOSED状态。 在实际应用中,如本案例所示,可以通过编写C语言的服务器端程序和C#的客户端程序来模拟TCP的连接和断开过程,同时使用Wireshark这样的网络抓包工具,可以直观地观察到三次握手和四次挥手的网络交互细节,这对于理解TCP协议的工作原理非常有帮助。通过分析抓包结果,我们可以验证和学习TCP连接的建立与终止过程中涉及的各个报文段和状态转换,进一步深化对TCP协议的理解。
2025-06-11 08:42:49 568KB 三次握手 四次挥手
1