随着计算机技术的不断提高,智能视频监控技术得到了很好的发展, 过去依靠人力监控视频中出现的人或汽车等既浪费人力物力,又不够准确,很容易发生遗漏,而智能监控就不存在这种问题,只需在程序中设定报警条件即可,能够准确地达到实时监控的目的。现在智能视频监控逐渐应用于城市道路、小区、银行等重要场所及对场景中的异常事件或人的异常行为的监控中, 应用前景广泛,正在逐步取代靠人力来观察视频信息。智能视频监控相比过去常用的靠人来监测的最重要的不同就是识别出需要监控的对象,通常是运动目标的提取。在本文中利用matlab视频处理功能,通过matlab程序来获取视频,使用背景减差法来检测出运动目标提取静止背景中的运动目标,并将结果显示出来,以进行进一步的分析处理。
2021-11-21 18:15:25 263KB 静止背景运动目标识别
1
本实例展示了如何利用Yolov2模型进行猫狗视频检测,可实时检测,利用到了keans聚类确定anchor个数,大小,利用不同模型进行特征提取等知识。
2021-11-20 17:05:12 124.69MB Yolov2 多目标识别 MATLAB 深度学习
Desktop_demon_水声目标识别_辐射_希尔伯特变换解调_辐射噪声
2021-11-18 16:52:27 1KB
1
由于受到水面的高反光性和波纹等边缘特征的影响,传统的水面目标识别算法不能很好地识别出目标。为此,提出基于深度学习的水面目标识别算法。首先采集大量的目标样本并对其进行标注,然后根据YOLOv3(You Only Look Once v3)算法的原理对算法的参数和网络结构进行优化,随后采用深度卷积神经网络的方法对目标样本进行训练。采用对目标样本进行数据增强的方式以适应不同环境进而提升算法的鲁棒性,采用相位相关性水岸线识别算法来提高识别速度。最后使用所提算法的网络结构训练所得的权重文件建立水面目标识别系统,该系统可以达到较高的识别率。实验结果验证所提算法的有效性和鲁棒性,对水面目标识别的后续研究有一定的参考价值。
2021-11-17 20:45:49 12.72MB 机器视觉 深度学习 目标识别 数据增强
1
移动目标识别与跟踪,在视频监控、人机交互、智能交通、军事应用等领域具有重大应用价值。本文针对当前目标识别与跟踪领域普遍存在的处理速度较慢、实时性不足等问题,提出了一种基于Apriltags识别的改进算法,对移动目标进行局部搜索,并结合Kalman滤波器实时估计目标下一时刻在图像中的位置,大幅提升了算法处理速度和跟踪性能。本算法在大疆M100四旋翼无人机平台上,搭载Manifold机载计算机完成了实验测试。实验证明,算法鲁棒性强、稳定性好,成功实现了无人机对快速移动目标的识别与稳定跟踪。
1
基于yolo网络的目标识别检测方法,及训练说明。YOLO(You Only Look Once: Unified, Real-Time Object Detection),是Joseph Redmon和Ali Farhadi等人于2015年提出的基于单个神经网络的目标检测系统。在2017年CVPR上,Joseph Redmon和Ali Farhadi又发表的YOLO 2,进一步提高了检测的精度和速度。
2021-11-14 10:51:15 3.64MB yolov3 深度学习 数据集
1
《智能视频监控中目标检测与识别》系统介绍了智能视频监控中目标检测与识别的基本问题及其相关处理技术。主要内容包括智能视频监控的理论、算法和典型应用实例。包括计算机视觉基本理论、运动目标检测技术、运动目标跟踪和分类技术、运动的场景分析及行为理解技术。其中目标的检测与识别技术在资助的科研项目中有成熟可行的应用实例。《智能视频监控中目标检测与识别》内容由浅人深、循序渐进,着重于经典内容和最新进展的结合,并辅以较多的应用范例。《智能视频监控中目标检测与识别》可作为高等院校有关专业的研究生和高年级本科生的教学参考书,也可供相关专业的科技人员学习参考。 上篇 智能视频监控中目标检测与识别概论 第1章 绪论 1.1 智能视频监控概述 1.1.1 智能视频监控的发展 1.1.2 智能视频监控中的关键问题 1.2 智能视频监控的研究内容 1.2.1 智能视频监控的系统结构 1.2.2 智能视频监控的难题 1.3 研究现状与应用前景 参考文献 第2章 计算机运动视觉相关理论 2.1 摄像机的标定 2.1.1 坐标系的变换 2.1.2 摄像机的标定 2.2 双目立体视觉 2.2.1 特征匹配关键技术 2.2.2 特征匹配算法分类与立体成像 2.3 运动视觉 2.3.1 运动视觉的研究内容 2.3.2 运动视觉处理框架 2.4 场景理解 2.4.1 场景理解认知框架 2.4.2 静态场景理解 2.4.3 动态场景理解 参考文献 第3章 运动目标检测技术 3.1 运动目标检测概述 3.1.1 光流法 3.1.2 相邻帧差法 3.1.3 背景差法 3.1.4 边缘检测方法 3.1.5 其他重要的相关方法 3.2 视频监控中的背景建模 3.2.1 背景提取与更新算法概述 3.2.2 基于GMM的背景提取与更新算法 3.2.3 基于AKGMM的背景提取与更新算法 3.2.4 去除阴影 3.3 ROI面积缩减车辆检测搜索算法 3.3.1 改进的帧差法 3.3.2 图像的腐蚀与膨胀 3.3.3 车辆目标分割识别 3.3.4 实验结果与分析 参考文献 第4章 运动目标跟踪技术 4.1 目标跟踪的分类 4.2 目标跟踪方法 4.2.1 基于特征的跟踪方法 4.2.2 基于3D的跟踪方法 4.2.3 基于主动轮廓的跟踪方法 4.2.4 基于运动估计的跟踪方法 4.3 粒子滤波器 4.3.1 离散贝叶斯滤波系统 4.3.2 蒙特卡洛采样 4.3.3 贝叶斯重要性采样 4.3.4 序列化重要性采样 4.3.5 粒子滤波(Particle Filte)一般算法描述 4.3.6 粒子数目N的选取 4.4 多视角目标跟踪 4.4.1 目标交接 4.4.2 多摄像机的协同 4.4.3 摄像机之间的数据通讯 4.4.4 多摄像机系统总体设计与集成 参考文献 第5章 运动目标分类技术 5.1 目标分类方法 5.1.1 基于形状信息的分类 5.1.2 基于运动特性的分类 5.1.3 混合方法 5.2 分类的特征提取 5.2.1 视频图像的两种特征 5.2.2 分类特征选择 5.3 分类器构造 5.3.1 支持向量机理论 5.3.2 多类支持向量机 5.3.3 特征训练 5.4 训练和分类方案 5.4.1 静态图像训练分类模型 5.4.2 动态视频中运动对象的分类 5.4.3 训练和分类的实验结果 参考文献 第6章 行为理解技术 6.1 行为理解的特征选择与运动表征 6.1.1 特征选择 6.1.2 运动表征 6.2 场景分析 6.2.1 场景结构 6.2.2 场景知识库的建立和更新 6.3 行为建模 6.3.1 目标描述 6.3.2 约束表达 6.3.3 分层的行为模型结构 6.4 行为识别 6.4.1 基于模板匹配方法 6.4.2 基于状态转移的图模型方法 6.4.3 行为识别的实现 6.5 高层行为与场景理解 6.6 行为理解存在的问题与发展趋势 参考文献 下篇 智能视频监控应用实例 第7章 白天车辆检测实例 7.1 道路交通样本库的采集与组织 7.1.1 样本的采集 7.1.2 样本库元信息和组织 7.2 车辆检测系统结构设计 7.2.1 基于视频的车辆检测方法概述 7.2.2 虚拟线圈车辆检测法的算法流程 7.2.3 系统框图 7.3 背景重构 7.3.1 视频背景重构技术回顾 7.3.2 基于IMFKGMM的背景提取与更新算法 7.4 灰度空间阴影检测算法研究 7.4.1 彩色图像的灰度变换 7.4.2 算法原理 7.4.3 试验结果 7.5 虚拟线圈车辆检测法 7.5.1 数学形态学后处理与状态机 7.5.2 交通参数的测量 第8章 夜间车辆检测实例 8.1 夜间视频车辆检测系统框架 8.2 摄像机配置 8.2.1 摄像机安装和标定 8.2.2 车灯在路面上的投影与视野的设
2021-11-11 10:49:11 23.61MB 视频监控 目标检测 目标识别
1
基于Emgucv进行复杂背景下的移动目标识别和追踪。 开发环境:vs2012 开发语言:c#
2021-11-09 12:00:37 47.74MB 图像处理 目标识别 目标追踪 背景分离
1
LFM调频连续波和CW波的脉冲压缩matlab仿真 可以自行设置目标数量,程序中默认2个。 (几个目标,LFM脉冲压缩后就会出现几个波峰) 通过时域和频域方法进行脉冲压缩,结果显示两种方式得到的脉冲压缩回波幅度结果一样
1
:SAR 图像舰船目标识别是 SAR 图像海洋监视应用中的一项关键技术。在广泛文献调研的基础上,首先建立了 SAR 图像舰船目标识别的主要流程; 接着对用于 SAR 图像舰船目标识别的众多特征进行归纳整理,分析了其物理意义及优缺 点; 然后对用于 SAR 图像舰船目标的分类算法进行了较为全面的综述; 最后分析了目前研究中所面临的主要问题,展望了 进一步研究的主要方向
2021-10-22 21:59:10 168KB SAR,舰船
1