原理: 利用复化梯形公式,复化Simpson公式,计算积分。 步骤: import math 测试函数 def f(x,i): if i == 1: return (4 - (math.sin(x)) ** 2) ** 0.5 if i == 2: if x == 0: return 1 else: return math.sin(x) / x if i == 3: return (math.exp(x)) / (4 + x ** 2) if i == 4: return math.log(1+x,
2022-05-19 12:03:41 76KB python python函数 数值积分
1
在1943年,沃伦麦卡洛可与沃尔特皮茨提出了第一个脑神经元的抽象模型,简称麦卡洛可-皮茨神经元(McCullock-Pitts neuron)简称MCP,大脑神经元的结构如下图。麦卡洛可和皮茨将神经细胞描述为一个具备二进制输出的逻辑门。树突接收多个输入信号,当输入信号累加超过一定的值(阈值),就会产生一个输出信号。弗兰克罗森布拉特基于MCP神经元提出了第一个感知器学习算法,同时它还提出了一个自学习算法,此算法可以通过对输入信号和输出信号的学习,自动的获取到权重系数,通过输入信号与权重系数的乘积来判断神经元是否被激活(产生输出信号)。 一、感知器算法 我们将输入信号定义为一个x向量,x=(x
2022-05-17 14:50:46 164KB python python函数 python算法
1
本文实例讲述了Python针对给定字符串求解所有子序列是否为回文序列的方法。分享给大家供大家参考,具体如下: 问题: 给定一个字符串,得到所有的子序列,判断是否为回文序列 思路: 对字符串遍历切片即可 下面是具体实现: #!usr/bin/env python # -*- coding:utf-8 -*- ''''' __AUthor__:沂水寒城 功能:对指定字符串寻找所有回文子序列 ''' def is_huiwen(one_str_list): ''''' 输入一个字符串列表,判断是否为回文序列 ''' if len(one_str_list)==1: retu
2022-05-12 23:23:09 45KB python python函数 python字符串操作
1
本文介绍了python实现简单中文词频统计示例,分享给大家,具体如下: 任务 简单统计一个小说中哪些个汉字出现的频率最高 知识点 1.文件操作 2.字典 3.排序 4.lambda 代码 import codecs import matplotlib.pyplot as plt from pylab import mpl mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定默认字体 mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题 word = [] coun
2022-05-12 19:58:13 111KB python python函数 python实例
1
主要用到的工具是Python中的Tkinter库 比较简单 直接上图形界面和代码 引用Tkinter库 from tkinter import * 建立主窗口对象 window=Tk() #设置窗口对象 window.title('counting machine') window.geometry(350x280) window['bg']='red' 建立标签框以及标签(将运算字符串显示在上面) frame=LabelFrame(window,bg='yellow',width=350,height=50) frame.pack() frame.place(x=0,y=0) la
2022-05-08 17:57:31 80KB config python python函数
1
1。总体概要 kNN算法已经在上一篇博客中说明。对于要处理手写体数字,需要处理的点主要包括: (1)图片的预处理:将png,jpg等格式的图片转换成文本数据,本博客的思想是,利用图片的rgb16进制编码(255,255,255)为白色,(0,0,0)为黑色,获取图片大小后,逐个像素进行判断分析,当此像素为空白时,在文本数据中使用0来替换,反之使用1来替换。 from PIL import Image '''将图片转换成文档,使用0,1分别替代空白和数字''' pic = Image.open('/Users/wangxingfan/Desktop/1.png') path = open(
2022-05-07 16:40:05 122KB knn python python函数
1
之前需要做一些目标检测的训练,需要自己采集一些数据集,写了一个小demo来实现图片的采集 使用方法: 指定name的名称,name为分类的标签 按n键拍摄图片 程序会在当前目录下生成一个pictures的文件夹,图片存放在其中 print("正在初始化摄像头...") import cv2 import os import datetime cap = cv2.VideoCapture(0) print("初始化成功!") # name='play_phone' # name='haqian' # name='spleeing' # name='zhengchang' # nam
2022-05-05 09:37:37 34KB python python函数 python实例
1
本代码可以帮你自动剪切掉图片的边缘空白区域,如果你的图片有大片空白区域(只要是同一颜色形成一定的面积就认为是空白区域),下面的python代码可以帮你自动切除,如果是透明图像,会自动剪切大片的透明部分。 本代码需要PIL模块 pil相关介绍 PIL:Python Imaging Library,已经是Python平台事实上的图像处理标准库了。PIL功能非常强大,但API却非常简单易用。 由于PIL仅支持到Python 2.7,加上年久失修,于是一群志愿者在PIL的基础上创建了兼容的版本,名字叫Pillow,支持最新Python 3.x,又加入了许多新特性,因此,我们可以直接安装使用Pill
2022-05-04 17:19:06 53KB python python函数 python实例
1
本文实例讲述了Python实现的微信红包提醒功能。分享给大家供大家参考,具体如下: #coding=utf-8 import itchat from itchat.content import TEXT from itchat.content import * import sys import time import re reload(sys) sys.setdefaultencoding('utf8') import os @itchat.msg_register(NOTE,isGroupChat=True)#监听群内红包消息 def receive_red_packet(msg):
2022-04-29 21:22:55 40KB python python函数 python实例
1
实际项目中会涉及到需要对有些函数的响应时间做一些限制,如果超时就退出函数的执行,停止等待。 可以利用python中的装饰器实现对函数执行时间的控制。 python装饰器简单来说可以在不改变某个函数内部实现和原来调用方式的前提下对该函数增加一些附件的功能,提供了对该函数功能的扩展。 方法一. 使用 signal # coding=utf-8 import signal import time def set_timeout(num, callback): def wrap(func): def handle(signum, frame): # 收到信号 SIGALRM 后的回调函数
2022-04-29 18:28:45 49KB python python函数 python装饰器
1