RBF神经网络模型,sinmulink模型仿真,画图分析程序,pid控制结构
2024-05-13 20:56:12 7KB 神经pid 神经网络控制
粒子群算法(PSO)优化长短期记忆神经网络的数据回归预测,PSO-LSTM回归预测,多输入单输出模型 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-05-13 10:49:49 41KB 神经网络 lstm
1
基于改进PSO-LSTM神经网络的气温预测.pdf
2024-05-13 10:49:10 1.18MB
1
粒子群算法(PSO)优化长短期记忆神经网络的数据回归预测,PSO-LSTM回归预测,多输入单输出模型 粒子群算法(PSO)优化长短期记忆神经网络的数据回归预测,PSO-LSTM回归预测,多输入单输出模型 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-05-13 10:47:04 3.19MB 神经网络 lstm
1
matlab 基于BP神经网络交通标志识别系统,matlab 基于BP神经网络交通标志识别系统,matlab 基于BP神经网络交通标志识别系统
2024-05-12 21:23:56 12.94MB 神经网络 matlab 交通标志识别
1
本文主要对LSTM模型结构改进及优化其参数, 使其预测股票涨跌走势准确率明显提高, 同时对美股周数据及日数据在LSTM神经网络预测效果展开研究. 一方面通过分析对比两者预测效果差别, 验证不同数据集对预测效果的影响; 另一方面为LSTM股票预测研究提供数据集的选择建议, 以提高股票预测准确率. 本研究通过改进后的LSTM神经网络模型使用多序列股票预测方法来进行股票价格的涨跌趋势预测. 实验结果证实, 与日数据相比, 周数据的预测效果表现更优, 其中日数据的平均准确率为52.8%, 而周数据的平均准确率为58%, 使用周数据训练LSTM模型, 股票预测准确率更高.
1
今天小编就为大家分享一篇Pytorch 神经网络—自定义数据集上实现教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2024-05-08 19:56:58 67KB Pytorch 神经网络 数据集
1
在Cora和Citeseer数据集上用图卷积神经网络实现链路预测,包括GCN网络搭建、Cora和Citeseer数据集的数据预处理,以及链路预测网络的训练和测试代码。
2024-05-08 14:05:12 7KB Cora 链路预测 图卷积神经网络
1
源程序+ 数据集+ 实验报告 问题描述: 理解序列数据处理方法,补全面向对象编程中的缺失代码,并使用torch自带数据工具将数据封装为dataloader 分别采用手动方式以及调用接口方式实现RNN、LSTM和GRU,并在至少一种数据集上进行实验 从训练时间、预测精度、Loss变化等角度对比分析RNN、LSTM和GRU在相同数据集上的实验结果(最好使用图表展示) 不同超参数的对比分析(包括hidden_size、batch_size、lr等)选其中至少1-2个进行分析 ps:用户签到数据实验的难度会稍高一些,若在实验中选用,可酌情加分
2024-05-08 11:05:31 18.51MB 深度学习 pytorch python
1
包含声学模型和语言模型两个部分组成,两个模型都是基于神经网络。 该项目实现了GRU-CTC中文语音识别声音模型,所有代码都在gru_ctc_am.py中,包括: 增加了基于科大讯飞DFCNN的CNN-CTC结构的中文语音识别模型cnn_ctc_am.py,与GRU相比,对网络结构进行了稍加改造。 完全使用DFCNN框架搭建声学模型,稍加改动,将部分卷积层改为inception,使用时频图作为输入,cnn_with_fbank.py。 新增使用pluse版数据集的模型,cnn_with_full.py,建议直接训练这个模型。 语言模型 - language_model文件夹下 新增基于CBHG结构的语言模型language_model\CBHG_lm.py,该模型之前用于谷歌声音合成,移植到该项目中作为基于神经网络的语言模型。
2024-05-07 18:47:06 34.52MB 神经网络 深度学习 语音识别
1