通常电机控制实验采用以微控制器如DSP为控制棱心来进行硬件平台搭建和软件控制算法编程,但该方法存在费时费力的缺点,因此提出利用dSPACE和Matlab/Simulink进行电机控制实验的方法,该方法免去常规方法的软件编程的步骤,节省了大量时间,且更改控制算法灵活。叙述基于dSPACE的电机控制系统实验平台的搭建过程和开发步骤,最后给出了应用实例。
2023-04-03 00:39:01 431KB 接口IC
1
有学习电机控制,逆变器的小伙伴可以参考一下。 里面包含了matlab的仿真模型源文件。
2023-03-31 16:34:33 52KB 直接转矩控制 电机控制
1
完整车用驱动电机原理与控制基础PPT课件,包含1-8章内容,结合b站视频,可以快速了解永磁电机模型结构以及SVPWM的控制方式
2023-03-31 15:19:43 38.64MB 电机控制 永磁电机 SVPWM
1
基于模型的设计简化嵌入式电机控制系统开发
2023-03-31 10:09:12 1.58MB 基于模型的设计 简化 嵌入式 电机控制
1
滑模观测器建模 0:03:14反电动势观测 0:30:40LPF低通滤波器建模 0:41:23角度计算 0:50:24速度计算 0:58:28自适应滤波器 1:02:46角度补偿 IF开环启动实现 1:22:02通过Stateflow构建开环切闭环状态机 1:40:50给定的开环角度计算 1:56:06开环启动切闭环控制实现 2:09:00生成代码调试成功启动 2:28:00速度响应
2023-03-30 20:34:28 3.02MB 电机控制 Simulink仿真 代码生成
1
由于无刷直流电机调速系统具有非线性、多变量、不确定时变系统等特点,在高控制精度和快响应速度的条件下,传统的PID控制方法已经不能满足无刷直流电机调速系统的要求,如果其中的参数变化超过一定范围,整个控制系统会出现不稳定。在分析无刷直流电机(BLDCM)的数学模型并将其简化的基础上,提出了一种无刷直流电机的预测函数控制(PFC)策略,并进行了Matlab仿真试验。该BLDCM系统采用双闭环调速,速度环中采用PFC控制,计算得到参考电流值作为电流环的输入,电流环采用离散PI控制,由滞环电流跟踪型PWM逆变器的原理实现电流控制。仿真试验结果显示,这种无刷直流电机调速系统可以取得良好的控制效果。
1
STC15W408as + 步进电机控制(精确角度) + lcd1602显示效果 STC15W408as + 步进电机控制(精确角度) + lcd1602显示效果 STC15W408as + 步进电机控制(精确角度) + lcd1602显示效果 STC15W408as + 步进电机控制(精确角度) + lcd1602显示效果 STC15W408as + 步进电机控制(精确角度) + lcd1602显示效果 STC15W408as + 步进电机控制(精确角度) + lcd1602显示效果 STC15W408as + 步进电机控制(精确角度) + lcd1602显示效果 STC15W408as + 步进电机控制(精确角度) + lcd1602显示效果 STC15W408as + 步进电机控制(精确角度) + lcd1602显示效果 STC15W408as + 步进电机控制(精确角度) + lcd1602显示效果 STC15W408as + 步进电机控制(精确角度) + lcd1602显示效果
2023-03-28 11:32:27 51KB STC15W408AS
1
基于单片机的步进电机控制的草莓种植系统 该项目包括原理图电路图 程序源码 演示视频讲解文档全套资料 三分拿去 超值了
2023-03-25 16:58:25 105.08MB 单片机 毕设 源码
1
3.1 标准应用电路 47R 47R LS VCC_IO TMC5160 SPI interface CSN SCK SDO SDI reference switch processing R E F L /S T E P R E F R /D IR DIAG / INT out and Single wire interface 5V Voltage regulator charge pump 22n 100V 100n 16V DIAG0/SWN CLK_IN DIAG1/SWP +VM 5VOUT VSA 2.2µ +VIO D R V _ E N N G N D D G N D A T S T _ M O D E D IE P A D VCC opt. ext. clock 12-16MHz 3.3V or 5V I/O voltage 100n 100n Controller LS stepper motor N S BMA2 Chopper 100n SRAH CE Optional use lower voltage down to 12V 2R2 470n Use low inductivity SMD type, e.g. 1210 or 2512 resistor for RS! Encoder unit A B N E N C B _ D C E N E N C A _ D C IN E N C N _ D C O Encoder input / dcStep control in S/D mode S D _ M O D E S P I_ M O D E opt. driver enable B.Dwersteg, © TRINAMIC 2014 RS SRAL LA1 LA2 HA1 HA2 BMA1 HS HS CA1 CB CA2 CB +VM LS LS BMB2 SRBH RS SRBL LB1 LB2 HB1 HB2 BMB1 HS HS CB1 CB CB2 CB +VM Both GND: UART mode C P I C P O V C P V S 11.5V Voltage regulator 12VOUT 2.2µ mode selection Bootstrap capacitors CB: 220nF for MOSFETs with QG<20nC, 470nF for larger QG 470n 470n Keep inductivity of the fat interconnections as small as possible to avoid undershoot of BM <-5V! RG RG RG RG RG RG RG RG Slope control resistors RG: Adapt to MOSFET to yield slopes of roughly 100ns. Slope must be slower than bulk diode recovery time. 47R 47R +VIO pd pd pd +VIO 图 3.1 标准电路 标准路使用最少的外部器件。根据所需的电流、电压和封装类型选择八个 MOSFET。两个采样电阻 设置电机线圈电流。请参阅第 8 章选择正确的采样电阻。电源滤波选用低 ESR 电容。为获得最佳性能, 建议功率桥附近线圈电流的最小容量为 100μF /安培。电容需要吸收斩波器操作产生的电流纹波。电源电 容上的电流纹波也取决于电源内阻和电缆长度。VCC _ IO 可以从 5VOUT 或外部电源(例如 3.3V 调节器)提 供。在 VM 高的应用中为了降低内部 5V 和 11.5V 稳压器的线性稳压器功耗,VSA 应该使用不同(较低)的 电源电压(参见第 0 章)。 基本布线提示 将采样电阻和所有滤波电容尽可能靠近功率 MOSFETs。 TMC5160靠近MOSFETs放置,短线互连线, 以最小化寄生电感。所有的 GND、GNDA、 GNDD 及采样电阻 GND,使用一个公共地。5VOUT 滤波电容 直接连到 5VOUT 和 GNDA 引脚。有关详细信息,请参阅布局提示。VS 滤波推荐使用低 ESR 电解电容。
2023-03-23 14:56:16 3.19MB TMC5160
1
视频对应的模型及文档内容,Simulink自动代码生成,有手就行 先实现VF开环控制 00:04:34:反Park变换 00:12:28: 七段式SVPWM 00:50:56:电机模型VF开环控制实现 01:23:35:模型整理,子模型调用实现 01:43:42:Clark变换 01:47:56:Park变换 电流环控制 实现 01:53:50:DQ轴电流环 速度环控制实现 02:08:10:速度环实现 02:27:39:生成代码配置及优化代码可读性 02:36:00:数据字典创建及参数导入 02:52:51:软件集成配置 03:02:00:角度转速度计算 03:11:06:上位机代码集成和通信 硬件运行演示 03:17:06:开发板运行演示
1