本文在概括介绍数字化测绘技术及特点的基础上,探讨了数字化测绘技术的作业模式及其在工程测量中的应用,给广大的测量工作者提供参考?
2025-10-25 11:32:06 1.07MB 工程技术 论文
1
MES系统数字化工厂解决方案是一套面向工业4.0与“中国制造2025”战略的闭环式制造执行系统。CMES作为该解决方案的中坚力量,以物料仓库、制造现场、成品仓库为核心,融合了自主研发的前沿智能专利技术,并受到全球20多个国家和地区的客户认可。该方案的核心在于智能制造,旨在通过优化制造流程,实现生产的智能化和自动化。 MES系统架构包含多个模块,如高级排产、库料点管理、生产管理、物料管理、品质管理、追溯管理等。这些模块通过整合条码技术、RFID技术、高清影像识别技术、传感器技术、AI技术、IoT技术等多种先进技术,提供包括工单管理、收货管理、数据采集、流程管控、客诉追溯等在内的一系列管理解决办法。 数字化产品设计与仿真解决方案涉及CAD零件设计、CAM编程及后处理、CMM机床仿真和MBD基于模型的设计等。它还包括CAE仿真分析和生产线及物流仿真,以确保产品设计和工艺的准确性。 数字化工艺设计与仿真解决方案则关注设计数据协同、工艺路线规划、三维工艺设计等环节,通过结构化工艺路线规划、BOM管理、工艺路线设计、三维工序模型设计等,实现工艺设计的精确化和可视化。 智能仓储物流解决方案则以ERP系统和物流系统(WMS、TMS)为核心,通过ERP系统Interface与物流管理服务器的整合,实现了入库预定、入库实绩、出库指示等物流管理功能,支持自动仓库、排序机械设备、GPS设备等的自动化和信息化。 基于MES的数字化生产执行解决方案涵盖了基础建模管理、计划派工管理、车间库存管理、WIP在制品管理、设备状态管理、现场作业管理、综合质量管理、产品追溯管理等。这一解决方案的目的是通过数字化看板、分析报表和实时监控,实现生产过程的透明化和高效化。 MES系统数字化工厂解决方案还包含了一个顶层设计,即构建以CMES为核心的数字化工厂智能工厂顶层设计。这涉及到统一身份认证、主数据管理、企业数据总线、工厂门户等,以及CAD、CAM、CAE、PDM、CAPP、PLM、MRO等系统的集成,确保生产执行和资源调度的高效性。 第二部分解决方案概览强调了以CMES为核心的数字化工厂构建,提供了业务蓝图以建立生产追溯与监控体系,包含商业报告和构建实时监控专用界面等。这套方案通过MES数据采集、质量检测、仓储物流管理、系统安全等模块,实现了工厂管理的数字化和实时化,包括数字化看板和分析报表,确保数据的实时反馈与质量监控。 MES系统数字化工厂解决方案致力于实现工厂生产过程的智能化、自动化和数字化,通过整合最新的信息技术,为企业提供从设计到生产的全流程优化,确保生产效率和产品质量的最大化,进而提升整个制造业的竞争力。
2025-10-24 11:04:30 42.17MB MES
1
内容概要:本文详细介绍了四开关Buck-Boost双向升降压数字电源的学习工程,涵盖11个具体项目,基于STM32F334开发板进行实践。主要内容包括PID控制算法、环路学习技术、恒压恒流控制以及零极点匹配控制算法的应用。文中提供了详细的代码示例和技术细节,如开关状态管理、Type3补偿器实现、恒压恒流模式切换、在线参数辨识和陷波滤波器设计等。 适合人群:具有一定嵌入式开发经验的工程师,特别是对电力电子和控制系统感兴趣的开发者。 使用场景及目标:适用于希望深入理解并实践数字电源控制技术的工程师,目标是掌握四开关Buck-Boost电路的工作原理及其在电池充放电、新能源系统中的应用。 其他说明:本文不仅提供了理论知识,还附有丰富的代码实例和调试技巧,帮助读者更好地理解和应用相关技术。
2025-10-22 10:41:33 893KB
1
大三上学期数字图像处理期末项目的主要目标是开发一个基于Matlab语言的路标识别系统。这一项目不仅涉及到数字图像处理的基本概念,还包括图像的采集、处理、分析以及特征提取等关键技术。在这一过程中,学生需要熟悉Matlab这一强大的数学计算和仿真平台,掌握其图像处理工具箱中的各种功能,如图像滤波、边缘检测、形态学操作、图像分割、特征提取和分类器设计等。 项目首先可能包括对路标图像的采集,这涉及到光学成像的基本知识和图像传感器的工作原理。随后,采集到的图像需要经过预处理,以去除噪声和干扰,改善图像质量,这通常包括灰度转换、直方图均衡化、滤波等操作。在图像分析阶段,可能需要运用到边缘检测算法来识别路标中的边缘信息,而形态学操作则用于进一步清理和强调这些边缘。 图像分割是路标识别中的关键步骤,它决定了能否准确地从图像中分离出路标区域。不同的分割方法,如阈值分割、区域生长、分裂合并等,需要根据实际图像的特点进行选择和调整。特征提取阶段,学生需要从分割后的图像中提取关键特征,这些特征可能包括颜色、形状、纹理等,这些特征将作为判断路标种类的依据。 分类器的设计和训练是路标识别系统的核心部分,学生需要利用Matlab中的机器学习工具箱,根据提取的特征训练一个分类器。这个分类器可能是基于支持向量机(SVM)、神经网络、决策树或其他机器学习算法。在项目开发过程中,学生还需要对系统的性能进行评估和优化,确保其在各种不同的路标图像上都有良好的识别效果。 项目开发过程中,可能会涉及到跨学科的知识,如信号处理、统计学、模式识别等,这对于学生的综合能力提升大有裨益。此外,由于项目基于Matlab平台,学生还将提高其编程能力和对复杂工程问题的解决能力。 整个项目是一个完整的工程实践过程,从问题定义、需求分析、系统设计、编码实现到系统测试和评估,每一步都要求学生将理论知识与实际应用结合起来。通过这一项目,学生不仅能深入理解数字图像处理的相关知识,还能增强运用Matlab进行算法开发的实操能力,为未来在计算机视觉和图像处理领域的深入研究和工作打下坚实的基础。 对应这一项目的各个文件可能包括以下内容: - 数据集文件:包含了用于训练和测试路标识别系统的各种路标图像。 - 预处理脚本:Matlab脚本文件,用于图像的预处理操作。 - 特征提取函数:用于提取路标图像的特征。 - 分类器设计代码:Matlab代码文件,包含了分类器的设计和训练过程。 - 测试脚本:用于对训练好的模型进行测试,验证识别准确率。 - 项目报告:包括项目的目标、设计思路、实现过程和测试结果等内容的文档。 - 实验结果图像:展示预处理、特征提取、分类识别等过程的图像结果。 这个期末项目的开发过程不仅锻炼了学生在数字图像处理方面的专业技能,而且也提升了他们在工程实践中的综合应用能力。通过这样的项目,学生将能够更好地理解和掌握数字图像处理的理论和实际应用,为其后续的学术研究或职业生涯打下坚实的基础。
2025-10-20 13:45:09 1.89MB matlab项目
1
工业机器人与数字孪生技术 数字孪生技术是指通过信息建模,将现实世界中的实体对象在数字虚拟世界中构建完全一致的数字模型。这种技术可以应用于工业机器人领域,实现机器人的数字化和智能化。 一、数字孪生技术的概念 数字孪生技术可以被视为一个或多个重要的彼此依赖的物料生产要素的数字映射系统。这种技术的本质是信息建模,旨在为现实世界中的实体对象在数字虚拟世界中构建完全一致的数字模型。数字孪生技术可以对实体对象的各个方面进行建模,例如形状、材料、结构、行为等,实现对实体对象的数字化和虚拟化。 二、数字孪生技术的应用 数字孪生技术可以应用于工业机器人领域,实现机器人的数字化和智能化。例如,在智能制造中,数字孪生技术可以用于机器人的设计、仿真和优化,提高机器人的效率和可靠性。同时,数字孪生技术也可以用于机器人的远程监控和维护,实现机器人的远程控制和故障诊断。 三、华为数字孪生技术产品 华为数字孪生技术产品是华为公司推出的数字孪生技术解决方案。该产品可以帮助企业实现数字孪生技术的应用,提高生产效率和产品质量。华为数字孪生技术产品包括数字孪生平台、数字孪生引擎和数字孪生 studio 等多种产品。 四、数字孪生技术的技术优势 数字孪生技术具有多种技术优势,例如: * 高度的虚拟仿真能力,可以模拟实体对象的行为和性能。 * 高度的信息建模能力,可以对实体对象的各个方面进行建模。 * 高度的可扩展性,可以与其他技术和系统集成。 * 高度的灵活性,可以满足不同的应用场景和需求。 五、工业机器人的概念 工业机器人是指一种可以自动完成特定任务的机器设备。工业机器人可以分为多种类型,例如工业机器人、服务机器人、家用机器人等。工业机器人可以应用于制造、物流、医疗等多种行业,提高生产效率和产品质量。 六、工业机器人与数字孪生技术的结合 工业机器人与数字孪生技术的结合是当前工业机器人技术的趋势。这种结合可以实现机器人的数字化和智能化,提高机器人的效率和可靠性。例如,在智能制造中,工业机器人可以与数字孪生技术结合,实现机器人的设计、仿真和优化。 七、结论 工业机器人与数字孪生技术的结合是当前工业机器人技术的趋势。这种结合可以实现机器人的数字化和智能化,提高机器人的效率和可靠性。数字孪生技术可以应用于工业机器人领域,实现机器人的数字化和智能化。同时,数字孪生技术也可以应用于其他领域,例如智能制造、物流、医疗等。
2025-10-17 17:46:59 22.74MB
1
在介绍基于FPGA的短程激光相位测距仪数字信号处理电路设计的知识点之前,我们需要先了解几个核心概念和相关技术。激光测距技术是利用激光的特性,测量目标物体与测量点之间的距离的方法。相位式激光测距是其中一种方式,其通过测量发射光与反射光之间的相位差来确定距离。在实际应用中,相位式激光测距仪可以提供高精度的数据处理和测量精度,非常适用于自动化测距方案。其原理和应用将在下文详细说明。 相位法激光测距技术的核心原理是基于光波传播过程中所产生的相位差与距离之间的关系。当激光器发出的调制激光束照射到目标物体上被反射回来时,通过测量发射光和接收光之间的相位差,就可以计算出目标物体与测距仪之间的距离。这一原理的基础在于波动的相位差与传播距离的直接关系。 为了实现上述原理,一套完整的相位式激光测距仪通常由几个关键部分组成:激光发射系统、角反射器、接收系统、综合频率系统、混频鉴相系统和计数显示系统等。激光发射系统负责发射调制光束,角反射器是用于反射激光的辅助装置,接收系统负责收集从角反射器反射回来的光信号,综合频率系统和混频鉴相系统是处理信号和提取相位信息的核心部件,而计数显示系统则是用于显示测量结果的用户界面。 在具体设计数字信号处理电路时,使用FPGA作为处理平台有其明显的优势。FPGA(现场可编程门阵列)是一种可通过编程改变其逻辑功能的集成电路,它具备可重配置、高集成度、并行处理能力强等特点。利用FPGA可以设计出高精度、实时性强的数字信号处理电路,这对于实现复杂的相位差提取算法以及提高测量精度非常关键。 在设计过程中,需要考虑如何提高鉴相精度和抗干扰能力。由于在实际环境中,测距仪可能会受到各种噪声和干扰的影响,因此设计时需要采取必要的信号处理措施,如数字滤波、信号同步等技术手段来确保测量的准确性。 除此之外,设计相位式激光测距仪还需要对调制频率进行合理选择。调制频率的大小直接影响测量距离的范围和精度。在设计中,需要根据实际应用场景,平衡测距范围和精度的需求,选择适宜的调制频率。 为了满足不同的应用需求,相位式激光测距仪可能还需要考虑小型化、数字化等方面的设计。小型化可以让设备更加便携,而数字化则能够提高系统整体的集成度和用户友好性。 基于FPGA的短程激光相位测距仪数字信号处理电路设计是一项结合了激光技术、数字信号处理、集成电路设计等多个领域知识的复杂工程。通过利用FPGA的可编程特性和高速数字信号处理能力,可以实现对激光相位测距仪的精确控制和信号处理,从而提高测量精度和系统的可靠性。随着相关技术的发展,这种测距技术的应用前景将更加广阔,特别是在需要高精度测量、快速数据处理和小型化设备的场合。
2025-10-16 14:38:44 213KB
1
在现代数字设计领域中,DDR3 SDRAM(双数据速率同步动态随机存取存储器)是一种广泛使用的内存技术,它通过在时钟的上升沿和下降沿同时进行数据传输,从而实现了较高的数据传输速率。Verilog是一种硬件描述语言(HDL),常用于设计和编写电子系统,尤其是集成电路(IC)。在本压缩包中,包含了DDR3的Verilog代码以及相关的项目和测试平台(testbench),覆盖了数字部分的实现以及DDR3的物理接口(ddrphy)。 DDR3的Verilog实现涵盖了从基本的寄存器传输逻辑(RTL)设计,到复杂时序控制和接口协议的实现。在设计DDR3控制器时,需要深入理解其时序要求,命令和控制信号的流程,以及数据读写操作的细节。设计人员通常会先定义DDR3控制器的状态机,然后根据DDR3标准规范来实现命令的生成和数据的传输。此外,DDR3的时钟域交叉(CDC)和数据对齐也是设计中的重点和难点,需要通过细致的设计来确保系统在不同频率和不同延时下都能稳定工作。 ddrphy指的是与物理DDR3内存颗粒交互的电路部分,它包括了信号驱动、信号接收、时钟管理、初始化和校准等关键功能。ddrphy的实现需要与内存颗粒的数据手册以及参考设计紧密配合,以保证信号完整性和满足电气特性要求。ddrphy设计的好坏直接关系到整个内存系统的性能和稳定性。 在testbench方面,它为设计的DDR3控制器和ddrphy提供了虚拟的运行环境。通过testbench,设计者可以在不依赖于真实硬件的情况下进行仿真测试,验证设计的功能正确性和稳定性。一个好的testbench应该能够模拟出各种可能的边界条件和异常情况,包括信号干扰、时序偏移、电源波动等,以确保设计在实际应用中的鲁棒性。 本压缩包中的文件"2022448_DDR3"很可能包含了以下几个部分的内容: 1. DDR3控制器的核心逻辑,包括命令生成、数据传输、读写操作、时序控制等。 2. DDR3物理接口(ddrphy)的设计,涉及信号驱动、接收、时钟域管理、初始化和校准。 3. 完整的testbench代码,用于仿真和验证DDR3控制器和ddrphy的正确性和稳定性。 4. 项目配置文件,可能包含仿真设置、源代码管理、编译和仿真脚本等。 通过这些文件,工程师可以进一步开发、调试和验证DDR3的Verilog代码,最终确保设计符合DDR3标准规范,并能在实际硬件上可靠运行。 本压缩包提供了一套完整的DDR3控制器和ddrphy的Verilog设计及其测试环境,为数字IC设计师提供了一个宝贵的资源,有助于加速DDR3控制器的设计流程,减少开发成本和时间,提高产品设计的成功率。
2025-10-15 09:27:56 167KB DDR3 数字IC verilog
1
数字逻辑与数字系统设计(袁小平)慕课参考答案
2025-10-15 01:05:13 2.33MB 数字信号处理
1
华南理工大学数字通信原理实验思考题参考答案(推荐文档).doc
2025-10-14 20:23:25 156KB
1
数字多道脉冲幅度分析器是一种用于测量和分析脉冲信号幅度的电子仪器。它通过将模拟信号转换为数字信号,再通过特定的算法分析信号的幅度分布。V2.0升级版的改进集中在提高数据处理速度、增加道数和精度,以及扩展了用户接口和数据分析功能。 V2.0升级版采用了最新一代的FPGA技术,FPGA即现场可编程门阵列,是一种可以通过软件编程来配置硬件逻辑的集成电路。在数字多道脉冲幅度分析器中,FPGA的使用显著提升了仪器的灵活性和性能。FPGA内部的大量逻辑单元和可编程的路由资源,使得系统能够同时处理多个信号通道,且每个通道都能够独立地进行复杂的信号处理。 FPGA数字多道脉冲幅度分析器的优势在于它的实时性。由于FPGA内部并行处理的特性,该分析器可以实时地对输入的脉冲信号进行幅度分析,迅速给出结果。这对于那些对数据处理速度要求极高的应用场景,比如高能物理实验、核医学成像等,是非常重要的。 V2.0升级版的另一个特点是采用了多道技术,这意味着分析器可以同时监测多个通道,每个通道对应不同的幅度范围。这种设计使得分析器能够同时捕获和分析一系列不同的信号,极大地扩展了仪器的应用范围。多道技术还使得分析器可以处理更复杂的信号环境,能够过滤掉背景噪声,只提取出有用的信号进行分析。 此外,V2.0升级版在用户接口和数据分析方面也进行了大量的改进。新的界面更加直观,用户可以更加方便地进行操作,调整参数设置,并对结果进行查看。数据分析功能的增强,使用户能够对信号进行更深层次的分析,包括但不限于频率分析、峰形分析等。这些改进不仅提高了用户的使用体验,也为科研工作者提供了更多的研究手段。 FPGA的使用还意味着用户可以根据自己的需求定制分析器的功能。通过编程FPGA,可以实现特定的算法,优化处理流程,甚至可以增加新的功能。这种高度的可定制性是传统固定硬件电路所无法比拟的。V2.0升级版的软件支持也做得非常到位,提供了丰富的开发资源和文档,方便用户进行二次开发。 在安全性方面,数字多道脉冲幅度分析器V2.0升级版也做了充分的考虑。由于分析器经常用于检测放射性物质,所以对辐射有一定的防护措施。此外,设备的稳定性和可靠性也是设计时的重要考虑因素,确保在长时间的使用中能够保持稳定的性能。 数字多道脉冲幅度分析器V2.0升级版在多方面都有了显著的提升,无论是从性能、功能、用户界面还是安全性,都达到了一个新的水平。这些改进使得分析器不仅能够满足现有的需求,还为将来的技术进步留有空间。
2025-10-14 09:28:59 36KB
1