一维卷积神经网络,cnn,回归预测,多输入,单输出,基于matlab,替换数据和特征个数即可,拿来直接使用。分为清空环境变量、导入数据、划分训练集和测试集、数据平铺、构造网络结构、参数设置、训练模型、均方根误差、绘制网络分析图、绘图、相关指标计算等几个模块,各个模块均标有备注,直接替换数据即可使用,用于新手学习深度学习算法非常好
1
为了进一步提高点云图像船舶分类方法的分类准确率,提出了一种基于三维卷积神经网络(3D CNN)的点云图像船舶分类方法。首先采用密度网格方法将点云图像转为体素网格图像,将体素网格图像作为3D CNN的输入对象;接着通过设计的6层3D CNN提取体素网格图像的高水平特征,捕捉结构信息;最后在输出层利用Softmax函数进行分类,得到最终的分类结果。实验结果表明,在自建的点云图像船舶数据集上,所提方法的分类准确率达到了96.14%,比3D ShapeNets方法和VoxNet方法分别提高了5.97%和2.46%。在悉尼城市目标数据集上,与现有一些方法相比,所提方法的分类准确率较高。这些结果均证明所提方法具有良好的分类性能。
2023-01-29 17:51:45 6.84MB 图像处理 船舶分类 三维卷积 体素网格
1
一种基于三维卷积神经网络的视网膜OCT图.PDF,专利,一种基于三维卷积神经网络的视网膜OCT图.PDF,专利
2023-01-27 17:26:37 413KB OCT 专利 深度学习
1
实现去雾算法,发现其中的问题,并对算法进行改进。 我首先实现了基于暗原色先验的去雾算法,并从运算速度和去雾效果方面进行了一定的改进。 之后,我训练了 AOD 卷积网络来进行图像去雾,并对数据集图片做一定的处理,增加了网络的鲁棒性,去雾效果也很不错。暗原色先验的去雾算法使用 MATLAB 实现,使用 MATLAB 的 GUI 设计了用户界面;AOD 卷积网络使用 Python 实现,使用 pyqt 设计了用户界面。
2023-01-15 19:39:35 19.88MB python 图像处理 图像去雾 卷积神经网络
1
交通标志识别 在这个项目中,我使用卷积神经网络对交通标志进行分类。 具体来说,我训练了一个模型,用于根据“德国交通标志对交通标志进行分类。 我使用TensorFlow进行模型开发,并在GPU上对其进行了训练。 分几个步骤: 加载数据集 探索,总结和可视化数据集 设计,训练和测试模型架构 使用模型对新图像进行预测 分析新图像的softmax概率 完整的项目代码可以在找到 数据集摘要与探索 1.数据集的基本摘要。 此步骤的代码包含在的3d code cell中 我使用了pandas库来计算交通标志数据集的摘要统计信息: 训练示例数= 34799 测试例数= 12630 图像数据形状=(32,32,3) 班级数量= 43 2.数据集的探索性可视化。 该步骤的代码包含在的5th code cell中。 这是数据集的探索性可视化。 它是显示数据分布方式的条形图。 我们看到分布不均。
2023-01-06 20:41:07 145KB JupyterNotebook
1
天气状况识别对交通运输安全、环境、气象等领域有重要意义。在各种产业向智能化转型的技术背景下,基于人工智能技术研究一种高效的天气自动识别方法,不仅能解决传统天气判别准确率低的问题,还能实现天气判别的实时性,有效地提高应对各种天气状况的处理能力。卷积神经网络(Convolutional Neural Network,简称CNN)是深度学习中的一种重要网络结构,它通过引入卷积层,池化层以及较深的网络层数,实现对图像高层语义特征的感知,提升图像分类效果。本文基于卷积神经网络架构,针对传统天气识别方法较难判断的可见光图像天气状况(多云、雨天、晴天、日出)。
2023-01-05 17:30:24 94.76MB 人工智能 图片识别
1
目前解释得比较清晰的一篇文章,对深度学习,卷积神经网络原理有帮助
1
本文对2019年10月更新的CNN综述文章《A Survey of the Recent Architectures of Deep Convolutional Neural Networks》进行了翻译,对大家全面了解CNN架构进展有所帮助。
2023-01-04 12:27:47 2.02MB 深度学习 卷积神经网络 CNN 综述
1
CNNvsNN_Digit_recognizer 进行该项目的目的是在通用数据集上比较卷积神经网络(CNN)和常规神经网络(NN)的性能差异。
2022-12-31 22:01:59 102KB JupyterNotebook
1
CNN与RNN图像分类 该程序使用卷积神经网络和递归神经网络对来自MNIST手写数字数据集的图像进行分类。 CNN最适合计算机视觉应用,因为可以使用RNN,但并不流行。该项目的目的是证明CNN模型相对于RNN可​​能具有的优势。 设置 需要Python 3.5-3.8才能与所有必需的模块兼容 # Clone this reposititory git clone https://github.com/JohnNooney/CNN_vs_RNN_Image_Classification # Go into repository cd ../cnn_vs_rnn_image_classification # Install required modules pip install -r requirements.txt 用法 使用python app.py启动应用程序后,将出现一个窗口,您可以
2022-12-30 22:17:56 3.99MB Python
1