项目详情请参见:https://handsome-man.blog.csdn.net/article/details/124972184 利用LIAT函数库通过LabVIEW和Arduino Uno控制板实现对单个舵机转动角度的控制。 LabVIEW程序首先通过设置的串口号与Arduino Uno控制板建立连接,然后调用Servo函数库中的Set Number of Servo和Configure Servo函数节点以设置舵机的数目为1、2和舵机的连接引脚,接着进入While循环并不断调用Servo Write Angle和Servo Read Angle函数节点先向舵机写入转动的角度值,并读取舵机当前的角度值。最后,断开与Arduino Uno控制板的连接。 项目可直接运行~
2024-10-21 17:10:07 1.74MB LabVIEW Arduino
1
华南农业大学,毕业设计-实现一个类似美颜相机(美图秀秀应用)的 Android app+源代码+文档说明 - 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! <项目介绍> 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------
2024-10-20 16:11:36 20.04MB 毕业设计 android
1
FFT(快速傅里叶变换)是一种将信号从时域(随时间变化的信号)转换为频域(不同频率成分的信号)的算法。使用STM32F407微控制器和FFT来分析正弦信号的幅值、频率和相位差。
2024-10-20 13:53:23 9.98MB FFT STM32 快速傅里叶变换
1
Web版的Navicat是一款基于Web浏览器的数据库管理工具,它提供了一系列功能来帮助用户轻松管理和操作数据库。以下是对Web版Navicat功能的简要描述: 连接和管理数据库:Web版Navicat支持连接多种类型的数据库,包括MySQL、MariaDB、Oracle、PostgreSQL等。用户可以通过界面方便地添加、编辑和删除数据库连接,以及管理数据库服务器。 数据库对象管理:通过Web版Navicat,用户可以查看和管理数据库中的各种对象,如表格、视图、存储过程、触发器等。用户可以创建、修改和删除这些对象,以及执行其他相关操作。 数据编辑和查询:Web版Navicat提供了一个直观的界面,让用户可以方便地编辑和查询数据库中的数据。用户可以浏览表格数据,进行增删改查操作,并支持复杂的SQL查询。 数据导入和导出:用户可以使用Web版Navicat将数据从不同格式(如CSV、Excel)的文件导入到数据库中,也可以将数据库中的数据导出为文件。这使得数据迁移和备份变得更加简单。 数据同步和备份:Web版Navicat支持数据库之间的数据同步,可以将数据从一个数据库复制到另
2024-10-18 21:46:57 1.39MB navicat web 毕业设计
1
plc程序实现控制对象任意顺序启动高级编程 PLC结构化编程任意改变对象的启动顺 本控制示例以5台电机为举例,控制对象不仅仅是电机,还可以是气缸,阀,伺服位置,产品次序等等,都可以通用,数量也不限制是5,可以任意指定,比如10,15,100等等。 核心技术在于算法和结构化编程控制方法,主要特点如下: 1.可以任意改变动作顺序 2.可以灵活配置 3.可以保存为配方,即可以实现多个启动路径规划 4.结构化编程模式 5.三菱全系列PLC通用 6.算法可以移植到其它品牌PLC,西门子,三菱,欧姆龙,松下,ab,施耐德等等,只要支持st或者结构化文本语言的PLC都可以使用 7.功能扩展灵活,方便维护 8.全部开原 此方法应用范围广泛,可以不用理解算法原理,便可以直接拿来使用,控制数量可任意修改,只需要在hmi上配置一下即可,方便快捷。 应用场景: 1、多台电机启动顺序 在有些场合需要根据需要动态调整投入运行的电机,或者根据人为选择来决定哪些电机工作,启动路径,可以保存成多个,可以随时修改。 只需要在HMI上配置即可,不需要修改任何程序。 2、产品取放顺序 可对产品取放顺序做动态调整 3、码垛,
2024-10-17 23:46:10 25KB 编程语言
1
该项目含有源码、文档、程序、数据库、配套开发软件、软件安装教程 项目运行 环境配置: Pychram社区版+ python3.7.7 + Mysql5.7 + HBuilderX+list pip+Navicat11+Django+nodejs。 项目技术: django + python+ Vue 等等组成,B/S模式 +pychram管理等等。 环境需要 1.运行环境:最好是python3.7.7,我们在这个版本上开发的。其他版本理论上也可以。 2.pycharm环境:pycharm都可以。推荐pycharm社区版; 3.mysql环境:建议是用5.7版本均可 4.硬件环境:windows 7/8/10 1G内存以上;或者 Mac OS; 6.Navcat11:这个版本不限10/11/14/15都可以。; Python-Django毕设帮助,指导,本源码(见文末),调试部署
2024-10-17 20:20:24 2.22MB django Python 二手车交易平台 论文
1
python 资源内容: 1、垃圾填埋场地选址(jupyter notebook 实现)。中文描述Python代码实现的过程。 2、Landfill_site_selection_gdal-main。Python实现代码(直接运行)。
2024-10-16 18:03:52 13.16MB python
1
DQN算法实现机器学习避开障碍走到迷宫终点。.zip
2024-10-16 13:42:12 256KB
1
在本文中,我们将深入探讨如何使用深度Q网络(DQN)算法进行移动机器人的三维路径规划,并通过MATLAB实现这一过程。DQN是强化学习领域的一种强大算法,它结合了深度学习模型的能力来处理复杂的环境状态空间,为智能体如移动机器人提供了高效的学习策略。 一、深度Q网络(DQN)算法 DQN算法是由DeepMind在2015年提出,它解决了传统Q学习算法中Q值估计不稳定的问题。DQN引入了经验回放缓冲区、目标网络和固定Q值更新等关键机制,使得深度神经网络在连续的环境交互中能够更稳定地学习。 1. 经验回放缓冲区:DQN存储过去的经验,以随机采样方式更新网络,减少了连续状态之间的相关性,增加了样本的多样性。 2. 目标网络:DQN使用两个网络,一个用于选择动作(主网络),另一个用于计算目标Q值(目标网络)。定期将主网络的参数复制到目标网络,以减少短期波动。 3. 固定Q值更新:为了避免网络在训练过程中过度估计Q值,DQN在计算目标Q值时使用的是旧的Q网络,而不是当前正在更新的Q网络。 二、移动机器人三维路径规划 在三维环境中,移动机器人的路径规划需要考虑更多的因素,如障碍物、空间限制和动态环境。DQN算法可以有效地解决这些问题,因为它能够处理高维度的状态空间,并通过学习找到最优策略。 1. 状态表示:在MATLAB中,可以将机器人的位置、方向、速度以及环境的三维地图作为状态输入到DQN模型。 2. 动作空间:定义机器人的移动动作,如前进、后退、左转、右转和上升/下降等。 3. 奖励函数:设计合适的奖励函数,以鼓励机器人避开障碍物,到达目标点,同时避免不必要的动作。 三、MATLAB实现 MATLAB提供了丰富的工具箱支持深度学习和强化学习,包括Deep Learning Toolbox和Reinforcement Learning Toolbox。在MATLAB中实现DQN路径规划步骤如下: 1. 定义环境:创建一个模拟三维环境,包括机器人的状态、动作和奖励函数。 2. 构建DQN模型:使用Deep Learning Toolbox构建包含多个隐藏层的神经网络,用于近似Q值函数。 3. 训练过程:设置训练参数,如学习率、批大小、经验回放缓冲区大小等,然后让机器人在环境中与环境交互,通过DQN模型更新策略。 4. 监控与调试:在训练过程中,观察机器人的性能和Q网络的收敛情况,调整参数以优化性能。 5. 测试与评估:训练完成后,用未见过的环境测试机器人的路径规划能力,分析其效果。 总结,DQN算法为移动机器人的三维路径规划提供了一种有效的解决方案,通过MATLAB的工具箱,我们可以方便地实现并调试这个算法。在实际应用中,可能还需要结合其他技术,如蒙特卡洛方法、搜索算法等,以进一步提升路径规划的效率和鲁棒性。
2024-10-16 13:18:07 3KB matlab
1
:介绍了利用交互式数据语言(Interactive Data Language,IDL)开发TM/ETM遥感影像大气与地形校正模型的详细过程,以 2000 年4 月30 日密云ETM影像为例,对大气与地形校正方法的有效性和实用性进行了验证。结果表明,该方法有效地消除了大 气与地形影响,提高了地表反射率等地表参数的反演精度和数据质量,为进一步开展定量遥感研究提供了数据质量保障。 ### 基于IDL的遥感影像大气与地形校正方法实现 #### 1. 引言 光学遥感技术广泛应用于多个领域,包括环境监测、资源管理等。然而,大气和地形因素对遥感影像的质量有着显著影响。大气中的散射作用会使电磁波强度衰减,降低图像反差;而地形起伏会导致大气垂直分布的变化,进一步影响图像质量。特别是在山地丘陵等复杂地形区域,这种影响更为显著。为了提高遥感影像的准确性及其在定量遥感研究中的应用价值,大气与地形校正变得至关重要。 #### 2. 模型总体设计 目前,存在多种大气与地形校正方法,但普遍缺乏一种适用于所有场景的通用方法。每种方法都有其特定的应用范围和局限性。本文介绍了一种基于IDL(Interactive Data Language)开发的大气与地形校正模型,并通过2000年4月30日密云地区的ETM影像对该方法进行了验证。 #### 3. IDL简介 IDL是一种专为科学计算和数据可视化设计的编程语言,由Research Systems Inc.(RSI)开发。它以其简洁的语法、强大的矩阵运算能力和高效的图形处理功能著称。IDL非常适合用于遥感影像处理,因为它能够高效地处理大量数据,并提供丰富的图形展示选项。此外,许多遥感软件(如ENVI)就是基于IDL构建的,这使得IDL编写的程序可以直接在这些环境中运行,无需额外的转换或接口工作。 #### 4. 大气与地形校正原理 大气与地形校正的核心在于准确估计并去除大气效应以及地形对遥感影像的影响。这一过程通常包括以下几个步骤: - **大气校正**:基于不同的模型(例如MODTRAN模型),估计大气路径辐射和大气散射,进而计算出无大气影响的地表反射率。 - **地形校正**:考虑到地形对入射角度的影响,通过地形因子(如坡度、坡向等)来调整每个像素的光照条件,从而校正因地形差异导致的辐射差异。 #### 5. 实现细节 - **IDL程序设计**:首先定义输入输出格式,然后根据大气校正模型编写代码。这包括读取遥感影像数据、应用MODTRAN模型计算大气透过率等步骤。 - **地形因子计算**:基于DEM数据计算地形因子,如坡度、坡向等。 - **校正算法**:结合大气透过率和地形因子,计算出校正后的地表反射率。 #### 6. 应用实例 以2000年4月30日密云地区的ETM影像为例,应用上述方法进行大气与地形校正。通过对校正前后影像的对比分析,验证了该方法的有效性和实用性。校正后影像的地表反射率更加准确,显著提高了数据质量,为后续的定量遥感研究提供了有力支持。 #### 7. 结论 本研究通过IDL实现了TM/ETM遥感影像的大气与地形校正方法。实验结果证明,该方法能有效消除大气与地形对遥感影像的影响,提高地表反射率等地表参数的反演精度,为定量遥感研究奠定了坚实的基础。未来的工作可以进一步优化校正算法,探索更多样化的应用场景,以提升遥感技术在各个领域的应用价值。
2024-10-14 23:26:21 823KB
1