在线教学平台,集成Scratch、ScratchJr、Python教学工具。包含课程、班级、作业、权限、赛事、社区等。
2024-10-29 09:36:04 140.59MB 课程资源 Scratch
1
Python粒子群优化算法(PSO,Particle Swarm Optimization)是一种基于群体智能的全局优化算法,源自对鸟群和鱼群集体行为的研究。该算法通过模拟粒子在多维空间中的搜索行为来寻找最优解,每个粒子代表可能的解决方案,并通过与自身历史最佳位置和群体最佳位置的迭代更新来逐步接近最优解。 在`main_pso.py`这个文件中,我们可以预期它包含了实现粒子群优化算法的Python代码。通常,这样的代码会包含以下几个关键部分: 1. **初始化**:需要初始化粒子群,包括每个粒子的位置和速度。位置通常在问题的搜索空间内随机生成,而速度则设定为一个小的随机值,确保粒子在初期能进行广泛探索。 2. **适应度函数**:这是评估每个粒子质量的关键,即计算粒子对应解的优劣。适应度函数通常与待解决的问题相关,如最小化一个目标函数或者最大化一个目标函数。 3. **更新规则**:在每代迭代中,粒子根据其当前速度和位置,以及自身和全局最佳位置的差距进行更新。公式一般如下: - 新速度 = ω * 旧速度 + c1 * r1 * (粒子最佳位置 - 当前位置) + c2 * r2 * (全局最佳位置 - 当前位置) 其中,ω是惯性权重,c1和c2是加速常数,r1和r2是随机数,用于引入探索和开发的平衡。 4. **边界处理**:粒子在更新位置时可能会超出搜索空间的边界,因此需要进行边界处理,确保粒子始终在可行域内移动。 5. **迭代**:重复上述过程直到达到预设的迭代次数或满足其他停止条件(如达到目标精度或解的稳定性)。 6. **结果输出**:输出最优解(全局最佳位置)和对应的适应度值。 文本`.docx`文件可能包含了算法的理论背景、使用说明、示例应用或其他相关资料。对于初学者,理解粒子群优化算法的基本原理和代码实现是至关重要的,这有助于将PSO应用于实际问题,如函数优化、机器学习模型参数调优、工程设计等领域。 在Python中,`numpy`和`scipy`等科学计算库经常被用来辅助实现PSO算法,它们提供了高效的数组操作和优化工具。此外,还有一些现成的Python库,如`pyswarms`,提供了封装好的PSO算法接口,便于快速应用。 Python粒子群算法代码通过模拟粒子的群体行为,寻找复杂问题的全局最优解。`main_pso.py`文件中的实现涵盖了初始化、更新规则、适应度评估等核心步骤,而`.docx`文件则可能提供了算法的详细解释和使用指导。通过学习和实践,我们可以掌握这种强大的优化工具,并将其应用到实际的工程和研究项目中。
2024-10-27 09:31:58 73KB python
1
本次实验我选择了前程无忧招聘网站作为爬取目标。考虑到当前正值毕业季,大量学生即将踏入社会,寻找合适的工作岗位,旨在通过八爪鱼爬虫工具,对前程无忧招聘网站进行信息爬取。前程无忧作为国内知名的招聘平台,汇聚了海量的招聘信息,尤其是软件测试这一热门岗位,对于求职者而言具有极高的参考价值。通过本次实验,我计划爬取前程无忧上软件测试相关岗位的详细招聘信息,包括岗位名称、公司名称、工作地点、薪资范围、福利待遇、岗位要求、以及职位描述等关键信息。为即将步入职场的软件测试专业学生或相关求职者提供全面的岗位信息,帮助他们更好地了解市场需求,做出更明智的就业选择。这些信息对于即将毕业的软件工程专业学生或相关求职者来说,具有重要的参考价值。 为了确保爬取数据的准确性和完整性,我将仔细研究前程无忧招聘网站的页面结构,分析数据分布规律,并设置合适的爬取规则。同时,我也将注意遵守相关法律法规和网站的使用条款,确保爬取行为合法合规。 ### 大数据八爪鱼采集入门教程:爬取招聘网址信息 #### 一、实验背景与目的 随着互联网技术的快速发展,大数据已经成为企业决策的重要依据之一。而在招聘领域,利用爬虫技术抓取网络上的招聘信息,不仅可以帮助企业更快地了解市场上的职位需求,还可以帮助求职者更加精准地定位自己的职业方向。本实验旨在通过使用八爪鱼爬虫工具来抓取前程无忧(51job.com)招聘网站上的软件测试岗位信息,以便为即将毕业的软件工程专业学生或相关求职者提供有价值的数据。 #### 二、实验目标与内容 1. **实验目标**: - 掌握八爪鱼爬虫工具的基本操作方法; - 学会分析目标网站的页面结构,设定合理的爬取规则; - 能够顺利抓取并导出所需的招聘信息数据。 2. **实验内容**: - 安装并配置八爪鱼爬虫工具; - 分析前程无忧网站的页面结构,确定爬取的关键信息点; - 设计爬虫脚本,实现自动化的数据抓取; - 导出抓取到的数据,并进行简单的数据分析。 #### 三、实验准备 1. **软件环境**: - 八爪鱼爬虫工具(Octopus Data Collector); - 前程无忧网站(51job.com)。 2. **数据需求**: - 软件测试岗位的详细招聘信息,包括但不限于: - 岗位名称; - 公司名称; - 工作地点; - 薪资范围; - 福利待遇; - 岗位要求; - 职位描述等。 #### 四、实验步骤详解 1. **准备工作**: - 下载并安装八爪鱼爬虫工具; - 打开浏览器访问前程无忧网站,并输入关键词“软件测试”,获取搜索结果页面的URL。 2. **爬虫工具设置**: - 在八爪鱼爬虫工具中新建自定义任务; - 输入前程无忧搜索结果页面的URL; - 设置数据采集规则:根据页面结构选择相应的元素,并指定需要抓取的具体信息项。 3. **自动化设置**: - 设置翻页机制,确保能够抓取多页数据; - 配置数据导出格式(例如Excel),以便后续分析使用。 4. **执行爬虫**: - 启动爬虫,监控抓取过程中的异常情况; - 完成抓取后导出数据至本地。 5. **数据验证与分析**: - 检查导出的数据是否完整且准确; - 对抓取到的数据进行简单的统计分析,如薪资分布、岗位要求频率分析等。 #### 五、实验难点与注意事项 1. **网页结构分析**: - 分析目标网站的HTML结构,理解各个元素之间的关系; - 使用开发者工具查看页面源码,识别所需数据所在的标签。 2. **HTTP协议理解**: - 理解HTTP请求与响应的过程; - 掌握如何模拟浏览器发送请求,处理返回的数据。 3. **合法合规性**: - 在抓取数据之前,确保遵守相关法律法规及网站使用条款; - 尊重数据来源网站的robots.txt文件规则,避免非法抓取。 #### 六、实验总结 通过本次实验,我们不仅学习了如何使用八爪鱼爬虫工具进行数据抓取,还深入了解了软件测试岗位在市场上的需求状况。对于即将毕业的学生而言,这些数据可以帮助他们更好地规划自己的职业道路。此外,实验过程中遇到的一些挑战,如网页结构的复杂性、爬虫逻辑的设计等,也锻炼了我们的问题解决能力。未来可以进一步探索如何利用这些数据进行更深层次的数据挖掘与分析,为求职者提供更多有价值的信息。
2024-10-26 22:08:56 5.29MB
1
手写数字识别,解压后进行加载: from scipy.io import loadmat mnist = loadmat('/app/datasets/mnist-original.mat') mnist.keys()
2024-10-26 16:23:29 9.74MB scikitlearn python
1
Python 智慧校园考试系统】是一款利用Python编程语言构建的在线教育平台,它集成了用户管理、考试功能和竞赛活动,旨在提升校园教育的智能化水平。此系统的核心特点在于其灵活性和互动性,为学生和教师提供了便捷的考试与教学工具。 一、系统架构与技术栈 1. 前端:可能采用HTML5、CSS3和JavaScript构建用户界面,可能会结合Bootstrap或Vue.js等前端框架来提高开发效率和用户体验。 2. 后端:Python作为主要编程语言,可能使用Flask或Django等Web框架构建服务器端逻辑,实现数据处理和业务功能。 3. 数据库:MySQL或PostgreSQL用于存储用户信息、试题、成绩等数据。 4. 用户认证:可能使用JWT(JSON Web Tokens)进行安全的用户身份验证。 二、功能模块 1. 用户注册与登录:用户可以通过邮箱或手机号进行注册,系统需要有密码加密和找回机制,确保用户信息安全。 2. 在线答题:用户可以参与不同类型的考试,系统需具备自动评分功能,实时反馈用户答题情况。 3. 竞赛管理:组织在线答题比赛,设定比赛时间、题目数量及难度,系统需能自动排序并展示排行榜。 4. 出题功能:机构用户(如教师)可以创建、编辑和管理试题,支持选择题、填空题、问答题等多种题型。 5. 机构注册:允许学校或教育机构注册并创建自己的账户,便于管理和发布课程资料。 6. 成绩查询:用户可以查看历次考试的成绩和排名,了解自身学习进步情况。 三、系统设计要点 1. 安全性:对用户敏感信息进行加密存储,防止数据泄露;使用HTTPS协议保障网络通信的安全。 2. 性能优化:通过缓存技术减少数据库访问,提高系统响应速度;合理设计数据库索引,提升查询效率。 3. 扩展性:设计模块化和插件化的结构,方便后期增加新功能或升级现有功能。 4. 移动优先:考虑到移动设备的广泛使用,系统应具备良好的移动端适配能力,提供流畅的移动体验。 四、开发流程 1. 需求分析:明确系统功能,编写需求文档。 2. 设计阶段:绘制系统架构图,设计数据库模型,制作UI原型。 3. 编码实现:根据设计文档编写代码,实现各个功能模块。 4. 测试:进行单元测试、集成测试和性能测试,确保系统稳定可靠。 5. 部署上线:配置服务器环境,部署应用,进行压力测试。 6. 维护更新:持续收集用户反馈,进行系统维护和功能迭代。 【Python 智慧校园考试系统】是一个全面的教育平台,它利用Python的高效和易用性,结合现代Web技术,为校园教育提供了数字化解决方案,有助于提升教学质量和学生的学习体验。通过持续的开发和优化,该系统有望在教育领域发挥更大的作用。
2024-10-25 15:56:49 47.22MB python 课程设计
1
【计算机毕业设计】Python源代码图书推荐系统的实现与解析 图书推荐系统是现代信息技术在图书领域中的重要应用,它能够根据用户的阅读习惯、喜好和行为数据,为用户推荐符合其口味的书籍。在这个项目中,我们将深入探讨如何利用Python语言构建一个这样的系统。 一、Python源码基础 Python作为一门强大的编程语言,因其简洁明了的语法和丰富的库支持,被广泛应用于数据分析、机器学习以及Web开发等领域。在这个图书推荐系统中,Python将作为主要的开发语言,通过处理和分析大量的图书数据,构建推荐算法。 1. 数据处理:Python的pandas库可以帮助我们快速地读取、清洗和预处理数据。通过对用户历史阅读记录、图书信息等进行整合,我们可以得到用于推荐的训练集。 2. 数据分析:NumPy和SciPy库提供了强大的数值计算和科学计算功能,对于处理推荐系统中涉及的统计和矩阵运算非常有帮助。 二、推荐系统理论 推荐系统通常分为基于内容的推荐和协同过滤推荐两种主要类型。 1. 基于内容的推荐:这种推荐方法依赖于对用户历史行为的分析,找出用户的偏好特征,然后推荐具有相似特征的图书。例如,如果用户喜欢阅读科幻类书籍,系统会推荐其他科幻类书籍。 2. 协同过滤推荐:协同过滤是目前最常见的推荐系统算法,分为用户-用户协同过滤和物品-物品协同过滤。通过分析用户之间的相似性或物品之间的相似性,为用户推荐未曾接触但可能感兴趣的图书。 三、具体实现 在这个Python图书推荐系统中,我们可以采用以下步骤: 1. 数据获取:收集用户的行为数据,如浏览记录、购买记录、评分等,同时获取图书的元数据,如类别、作者、出版社等。 2. 数据预处理:清洗数据,处理缺失值,统一数据格式,构建用户-图书交互矩阵。 3. 特征工程:提取用户和图书的特征,如用户的历史偏好、图书的类别等。 4. 模型选择:可以选用基于内容的推荐算法,如TF-IDF、余弦相似度;或者协同过滤算法,如User-Based、Item-Based。 5. 训练模型:使用训练集对模型进行训练,调整模型参数,优化推荐效果。 6. 预测与推荐:对新的用户行为数据进行预测,生成推荐列表。 7. 评估与优化:通过准确率、召回率、覆盖率等指标评估推荐效果,不断迭代优化模型。 四、项目挑战与优化方向 1. 冷启动问题:新用户或新图书缺乏历史数据,推荐准确性可能会降低。解决方案可以是利用流行度进行初始推荐,或结合用户的基本信息进行推荐。 2. 稀疏性问题:用户-图书交互矩阵可能很稀疏,影响推荐效果。可以考虑使用矩阵分解技术,如SVD,降低维度,提高计算效率。 3. 实时性问题:推荐系统需要实时响应用户行为。可以通过增量学习或流式计算来提高系统的响应速度。 通过这个毕业设计项目,学生不仅能够掌握Python编程技能,还能深入了解推荐系统的核心算法,为未来在大数据分析、个性化推荐等领域的发展打下坚实的基础。
2024-10-25 10:39:02 5.86MB python源码 毕业设计 推荐系统
1
python音频指纹提取和识别
2024-10-24 21:56:23 74.34MB python
1
在《Visual Basic 数据库开发从入门到精通》这个主题中,我们将深入探讨如何利用Visual Basic这一编程语言进行数据库应用的开发。Visual Basic是Microsoft推出的一种面向对象的编程环境,特别适合初学者和专业开发者用于创建Windows应用程序。在这个教程中,我们将主要关注与数据库交互的部分,包括ADO(ActiveX Data Objects)的使用以及对SQL Server和Oracle 9i数据库的操作。 让我们看看第5章“ADO使用基础”。ADO是Microsoft提供的一个核心数据访问组件,它允许开发者在各种数据库系统中轻松地执行数据操作。在这一章中,你将学习如何创建连接对象、命令对象、记录集对象等,这些都是与数据库交互的基础。ADO使得编写SQL查询、执行存储过程、添加、修改和删除数据变得简单易行。此外,你还将了解到事务处理、错误处理和数据绑定等高级概念,这些都是构建健壮数据库应用程序的关键。 接着,进入第6章“操作SQL Server数据库”。SQL Server是Microsoft的一款关系型数据库管理系统,广泛应用于企业级数据存储和管理。在这里,你将学习如何使用Visual Basic连接到SQL Server,创建数据库和表,以及执行CRUD(创建、读取、更新、删除)操作。你还会接触到存储过程、视图、索引等数据库设计和优化的要素。了解如何在VB中有效管理SQL Server数据库对于开发高效的数据驱动应用至关重要。 我们转向第7章“操作Oracle 9i数据库”。Oracle 9i是Oracle公司的一个重要版本,提供了强大的数据库功能。在这一章,你将学习如何使用Visual Basic与Oracle数据库进行通信,这涉及到设置Oracle客户端、建立连接字符串、执行SQL语句等。Oracle数据库特有的特性如PL/SQL、游标、触发器等也将被讲解,这些将帮助你开发跨平台的、高性能的数据库应用。 《Visual Basic 数据库开发从入门到精通》涵盖了从基础的数据库连接和操作,到特定数据库系统的高级特性的全面教程。通过学习,你将具备使用Visual Basic进行数据库应用程序开发的能力,无论是小型的个人项目还是大型的企业级解决方案,都能游刃有余。这是一条提升编程技能和数据库管理能力的重要途径,对于希望在IT领域尤其是数据库开发方向发展的你来说,是不容错过的学习资源。
2024-10-24 11:34:27 3.6MB Visual Basic
1
标题中的“基于VFNet&Varifocal-Loss改进YOLOv5的番茄成熟度检测系统”揭示了这个项目的核心:它是一种使用深度学习技术来识别和评估番茄成熟度的系统。YOLOv5是一个非常流行的实时目标检测模型,而VFNet(Variational Feature Network)和Varifocal Loss则是为了提升其在特定任务上的性能而引入的优化方法。在这个系统中,VFNet可能用于提取更具有区分性的特征,而Varifocal Loss则可能是为了解决传统二分类损失函数在处理不平衡数据时的不足。 YOLOv5是You Only Look Once(YOLO)系列的最新版本,以其快速的检测速度和较高的准确性而受到赞誉。YOLO模型的工作原理是将图像分割成多个网格,并预测每个网格中是否存在目标,以及目标的类别和边界框。YOLOv5相较于早期版本进行了多方面的优化,包括使用更先进的网络架构和训练技巧,使其在保持高效的同时提高了精度。 VFNet是一种针对目标检测任务的特征学习框架,旨在增强模型对目标特征的理解和表示能力。通过引入变分方法,VFNet可以学习到更具多样性和鲁棒性的特征,从而在复杂的视觉任务中提高检测性能。在番茄成熟度检测这样的任务中,能够准确地捕获番茄的颜色、形状等关键特征至关重要。 Varifocal Loss是一种专门为解决目标检测中的多类别不平衡问题而设计的损失函数。在传统的二分类问题中,如前景/背景,容易出现类别不平衡,使得模型过于关注占多数的类。而在目标检测中,这种情况更为复杂,因为除了前景和背景,还有多个不同的目标类别。Varifocal Loss通过引入渐进式权重分配,更好地处理了这一问题,使得模型能够更加均衡地关注各类别的预测。 这个压缩包内的"readme.txt"文件很可能包含了项目的详细说明,包括如何构建和运行这个系统,以及可能的数据集和训练过程的描述。"VFNet-Varifocal-Loss-Enhanced-YOLOv5-Tomato-Ripeness-Detection-System-main"目录可能包含了源代码、预训练模型、配置文件和其他相关资源。 这个系统利用了深度学习的强大功能,特别是YOLOv5的高效目标检测能力,结合VFNet的特征增强和Varifocal Loss的类别平衡优化,实现了对番茄成熟度的准确判断。这对于农业自动化、产品质量控制等领域具有很高的应用价值。
2024-10-24 10:12:21 4.16MB yolov5 python
1
VB脚本从入门到精通.CHM
2024-10-23 14:52:08 531KB VB脚本从 入门到精通
1