《LaTeX 完全学习手册第二版》是胡伟先生的力作,这本书全面而深入地介绍了LaTeX这一强大的排版系统。LaTeX,源于TeX,是一种基于TeX的排版系统,广泛应用于科技论文、书籍、报告等文档的编写,尤其在数学公式、图表和专业术语的处理上具有显著优势。 本书作为第二版,相较于第一版,内容得到了大幅度的扩充,从原有的三百多个示例增加到了五百多个,充分展示了LaTeX的多样性和灵活性。这些实例涵盖了从基本的文本编辑、段落格式化,到复杂的表格制作、图形插入、数学公式的排版以及自定义命令和宏包的使用等多个方面,使读者能够逐步掌握LaTeX的精髓。 在字体一章中,作者新增了大量内容,这部分通常包括字体的选择、大小调整、样式变换以及特殊字符的输入。LaTeX支持多种字体和样式,读者可以学习如何根据需要定制文档的视觉效果,如设置正文字体、标题字体,以及如何使用斜体、粗体和下划线等样式。此外,还包括特殊字符,如希腊字母、数学符号的插入,这对于撰写科学论文尤其重要。 LaTeX的另一个核心特点是其强大的自动化功能。通过定义宏,用户可以创建自己的命令,简化复杂的排版任务。例如,定义一个命令来自动插入复杂的数学公式,或者创建一个环境来统一处理特定类型的列表或表格。书中对此进行了详细的讲解,并提供了丰富的实例供读者实践。 此外,本书还深入介绍了如何使用LaTeX与各种图形工具(如TikZ, PSTricks等)结合,创建高质量的图表和图像。对于需要插入图片的用户,书中有指导如何调整图片大小、位置和透明度的方法。 另外,书中的附录可能包含了一些实用的LaTeX资源和工具,如参考手册、常用宏包列表以及在线社区和论坛的信息,这些都是学习和使用LaTeX过程中不可或缺的参考资料。 《LaTeX 完全学习手册第二版》是一本全面且实用的学习LaTeX的宝典,无论你是初学者还是有经验的用户,都能从中受益。通过学习和实践书中的实例,你可以熟练掌握LaTeX的各项技能,从而提高你的文档制作效率和质量。
2024-09-08 00:09:47 48.69MB latex
1
JavaScript学习
2024-09-06 16:05:38 13KB javascript 网络协议
1
css教程教学欢迎大家学习
2024-09-06 15:55:43 8KB 课程资源
1
摘要提到的基于RMQGS-APS-Kriging的主动学习结构可靠性分析方法,是一种旨在提高机械产品结构可靠性分析精度和效率的技术。该方法主要由以下几个关键步骤构成: 1. **随机移动四边形网格抽样 (RMQGS)**:这是一种用于选取初始样本点的策略。RMQGS方法在设计空间中生成一个四边形网格,然后随机移动这些点以避免采样点过于集中或疏离,从而得到更均匀的样本分布,有助于后续性能函数值的准确计算。 2. **差分进化算法 (Differential Evolution, DE)**:DE是一种全局优化算法,它被用来优化Kriging代理模型的构建。通过对初始样本点的性能函数值进行计算,DE可以找到性能函数的高精度近似解,建立高质量的Kriging模型。 3. **交替加点策略 (Alternate Point Strategy, APS)**:在每次迭代中,通过欧式距离定义一个抽样限定区域,以此确定新的样本点可能存在的范围。然后,APS交替使用主动学习U函数和改进EI函数来筛选出最佳样本点,这些点能最大化模型的预测精度或降低不确定性。 4. **主动学习U函数和改进EI函数**:这两种函数是用于指导样本点选择的评估标准。主动学习U函数考虑了样本点的不确定性,而改进EI函数则是在考虑了模型的预测不确定性和样本点的价值基础上进行优化,它们共同帮助找到最能提升模型性能的样本点。 5. **Kriging代理模型**:Kriging是一种统计学上的插值技术,用于构建输入变量与输出变量之间的数学模型。在这个方法中,Kriging模型作为性能函数的近似,能够减少直接计算性能函数的次数,提高计算效率。 6. **子集模拟 (Set Simulation, SS)**:SS方法被用于计算由优化Kriging模型拟合的性能函数的可靠度。通过多次模拟,SS可以估算结构的失效概率,同时提供收敛性检查,以确保计算结果的准确性。 7. **收敛准则**:在整个分析过程中,通过监控Kriging模型的性能和可靠度计算的收敛情况,确定何时停止迭代,从而得到最终的结构可靠度估计。 通过这种RMQGS-APS-Kriging的主动学习方法,可以有效地处理机械产品的“黑箱”问题,即那些内部机理复杂、难以解析的性能函数,同时兼顾分析精度和计算效率,实现对结构可靠性的精确评估。相比于传统的基于代理模型的可靠性计算方法,该方法在减少性能函数调用次数和缩短计算时间方面表现出显著优势。
2024-09-06 14:59:18 660KB
1
### SUNET: Speaker-Utterance Interaction Graph Neural Network for Emotion Recognition in Conversations #### 背景与意义 在当今社会,随着人工智能技术的飞速发展,对话系统中的情感识别(Emotion Recognition in Conversations, ERC)已经成为了一个重要的研究领域。通过捕捉对话中说话人的情绪变化,ERC在客户服务、心理治疗、娱乐等多个领域都有着广泛的应用前景。近年来,图神经网络(Graph Neural Networks, GNNs)因其能够捕捉复杂非欧几里得空间特征的能力,在ERC任务中得到了广泛应用。然而,如何有效地建模对话过程,以提高在复杂交互模式下的ERC效果仍然是一个挑战。 #### 主要贡献 为了解决上述问题,本文提出了一种名为SUNET的新方法,该方法构建了一个基于说话人和话语(utterance)交互的异构网络,有效考虑了上下文的同时,还考虑了说话人的全局特性。具体而言,SUNET的主要贡献包括: 1. **构建Speaker-Utterance Interactive Heterogeneous Network**:SUNET首先构建了一个说话人-话语交互的异构网络,该网络不仅包含了话语节点,还包括了说话人节点,这样可以在考虑话语之间关系的同时,也考虑到说话人之间的联系。 2. **基于GNN的情感动态更新机制**:在异构网络的基础上,SUNET利用图神经网络对话语和说话人的表示进行动态更新。这一机制根据说话顺序来更新话语和说话人的表示,从而更好地捕捉到对话中的情感变化。 3. **定制化的节点更新策略**:为了充分利用异构网络的特点,SUNET分别为话语节点和说话人节点设计了不同的更新方法,确保每个节点都能得到最合适的表示更新。 #### 方法论 1. **网络结构**: - **话语节点**:每个话语被视为一个节点,其包含的内容可以是文本、语音或两者的组合。这些节点通过边与其他话语节点相连,表示对话中的话语顺序。 - **说话人节点**:每个说话人都有一个对应的节点,该节点不仅包含了说话人的基本信息,还包含了该说话人在整个对话中的所有话语的汇总信息。 2. **节点特征更新**: - **话语节点**:采用特定的GNN层(如GCN、GAT等),根据当前话语及其前后话语的内容,更新该话语节点的特征向量。 - **说话人节点**:说话人节点的更新则依赖于与其相关的所有话语节点的信息。通过聚合这些信息,可以更新说话人节点的特征向量,以反映说话人在对话中的情绪状态。 3. **训练与优化**: - 使用多轮对话数据进行训练,并采用交叉验证等技术优化模型参数。 - 在训练过程中,可以引入额外的任务(如说话人身份识别)作为辅助任务,以进一步提升模型性能。 #### 实验结果 为了验证SUNET的有效性,作者在四个ERC基准数据集上进行了广泛的实验。实验结果显示,SUNET相比于现有方法取得了平均0.7%的性能提升。这表明,通过结合说话人和话语的交互信息,并利用图神经网络对其进行建模,可以有效地提升情感识别的效果。 SUNET为对话情感识别提供了一种新的视角,通过构建说话人-话语交互的异构网络并利用图神经网络进行建模,实现了对对话中情感变化的有效捕捉。这种方法不仅在理论上有一定的创新性,在实际应用中也具有很高的潜力。
2024-09-05 17:14:59 1.18MB 机器学习 人工智能 深度学习
1
在Halcon机器视觉软件中,处理图像和区域特征是一项核心任务。本篇主要讨论如何从Image图像中的Region区域获取各种特征参数,这对于图像分析、识别和分类至关重要。以下是一些关键函数及其作用的详细说明: 1. **area_center_gray**: 这个函数用于计算Region区域的面积(Area)以及重心坐标(Row, Column)。面积是区域内像素数量的总和,重心则是区域内像素位置的平均值,这对于理解区域的大小和位置很有帮助。 2. **cooc_feature_image**: 它用于计算共生矩阵并提取灰度特征值,包括Energy(能量),Correlation(相关性),Homogeneity(均一性)和Contrast(对比度)。这些特征值反映了图像像素灰度值的分布特性,对于纹理分析特别有用。 3. **cooc_feature_matrix**: 该函数基于共生矩阵计算出上述的灰度特征值,可以用于进一步的纹理分析。 4. **elliptic_axis_gray**: 它用于计算Region的主轴长度(Ra, Rb)和旋转角度(Phi),这对于识别和测量图像中椭圆形或圆形的物体非常有帮助。 5. **entropy_gray**: 这个函数计算区域的熵(Entropy)和各向异性(Anisotropy)。熵是衡量区域灰度分布不确定性的一个指标,而各向异性则反映了区域灰度分布的对称性。 6. **estimate_noise**: 通过此函数可以从单个图像中估计噪声水平(Sigma),有多种方法可供选择,例如foerstner、immerkaer、least_squares和mean,这些方法可以帮助优化后续的图像处理步骤。 7. **fit_surface_first_order** 和 **fit_surface_second_order**: 这两个函数用于拟合一阶和二阶灰度平面,分别计算相应的逼近参数(Alpha, Beta, Gamma)和(Alpha, Beta, Gamma, Delta, Epsilon, Zeta)。它们可用于平滑图像,去除噪声,或进行表面分析。 8. **fuzzy_entropy** 和 **fuzzy_perimeter**: 这两个函数提供了一种处理模糊边界的方法,计算区域的模糊熵和模糊周长,适用于边缘不清晰或者定义模糊的区域。 9. **gen_cooc_matrix**: 生成共生矩阵,这对于分析相邻像素之间的灰度关系非常有用,是纹理分析的基础。 10. **gray_histo** 和 **gray_histo_abs**: 这两个函数用于获取图像区域的灰度直方图,可以是相对的或绝对的,有助于理解区域灰度值的分布。 11. **gray_projections**: 计算水平和垂直方向的灰度值投影,这在检测线状结构或进行边缘检测时非常有效。 12. **histo_2dim**: 用于计算双通道灰度图像的二维直方图,这对于彩色图像的分析尤为重要。 13. **intensity**: 提供区域的灰度平均值(Mean)和标准偏差(Deviation),这对于识别和区分不同灰度级别的区域十分关键。 14. **min_max_gray**: 这个函数可以找到区域内最小和最大的灰度值,这对于阈值设定和其他图像分割操作具有指导意义。 Halcon提供的这些功能使开发者能够深入地分析和理解图像中的Region区域,从而实现精确的图像处理和机器视觉应用。无论是进行形状分析、纹理识别还是特征提取,这些工具都是不可或缺的。通过熟练掌握这些函数,可以有效地解决实际问题,提高自动化系统的性能。
2024-09-05 11:10:07 161KB
1
针对栈式稀疏去噪自编码器(SSDA)在图像去噪上训练难度大、收敛速度慢和普适性差等问题,提出了一种基于栈式修正降噪自编码器的自适应图像去噪模型。采用线性修正单元作为网络激活函数,以缓解梯度弥散现象;借助残差学习和批归一化进行联合训练,加快收敛速度;而为克服新模型对噪声普适性差等问题,需要对其进行多通道并行训练,充分利用网络挖掘出的潜在数据特征集计算出最优通道权重,并通过训练权重权重预测模型预测出各通道最优权重,从而实现自适应图像去噪。实验结果表明:与目前降噪较好的BM3D和SSDA方法相比,所提方法不仅在收敛效果上优于SSDA方法,而且能够自适应处理未参与训练的噪声,使其具有更好的普适性。
1
该交通数据集来源于PeMS网站,包含圣贝纳迪诺市(美国加利福尼亚州南部一座城市)8条高速公路1979个探测器,2016年7月1日至2016年8月31日这2个月的数据。这些传感器每5分钟收集一次数据,包含1979个所有的传感器每5分钟经过的车辆数。 数据集 节点 特征数 时长 时间窗口 PeMSD8 107 3 61天 5min 此外本数据集还包含一个3*107的邻接矩阵文件,该数据表示了107个路口之间的相邻情况(即连通性) 以及节点之间的距离。 可用于交通流量预测、交通速度预测、交通拥堵情况预测、交通信号灯绿信比条件、时间序列分析、时空序列分析
2024-09-04 22:13:20 17.45MB 数据集 数据挖掘 交通预测 深度学习
1
该交通数据集来源于PeMS网站,包含旧金山湾区(美国加尼福尼亚州旧金山大湾区)29条高速公路3848个探测器,2018年1月1日至2018年2月28日这2个月的数据。这些传感器每5分钟收集一次数据,包含3848个所有的传感器每5分钟经过的车辆数。 数据集 节点 特征数 时长 时间窗口 PeMSD4 307 3 59天 5min 此外本数据集还包含一个307*307的邻接矩阵文件,该数据表示了307个路口之间的相邻情况(即连通性) 以及节点之间的距离。 可用于交通流量预测、交通速度预测、交通拥堵情况预测、交通信号灯绿信比条件、时间序列分析、时空序列分析
2024-09-04 22:12:25 31.14MB 数据集 数据挖掘 交通预测 深度学习
1
在这个名为“心脏病发作预测数据集”的资源中,我们聚焦于利用数据科学和机器学习方法来预测心脏疾病的发生。数据集包含303个样本,这些样本代表了不同的心脏病患者,目的是通过分析一系列的患者特征来预测他们是否可能会发生心脏病发作。下面将详细介绍这个数据集的关键知识点以及可能涉及的相关技术。 1. **数据集构成**: 数据集由14个属性组成,每个属性代表患者的一个特定特征,例如: - **年龄**:年龄是心脏病风险的重要因素,通常随着年龄的增长,心脏病的风险会增加。 - **性别**:男性通常比女性有更高的心脏病发病率。 - **胸痛类型**:胸痛的性质和严重程度可能预示着不同类型的心脏问题。 - 其他可能的属性包括血压、胆固醇水平、血糖水平、吸烟状况、家族病史等,这些都对心脏健康有着直接影响。 2. **数据分析**: 在开始预测模型构建之前,数据分析师会进行数据探索,包括计算统计量、绘制图表和进行相关性分析,以理解各特征之间的关系和它们与心脏病发作的关联。 3. **特征工程**: 特征工程是机器学习过程中的关键步骤,可能涉及对原始数据进行转换、创建新的特征或处理缺失值。例如,将性别转换为二元变量(男性=1,女性=0),或者对连续数值进行标准化或归一化。 4. **模型选择**: 对于心脏病发作预测,可以使用多种机器学习模型,如逻辑回归、决策树、随机森林、支持向量机、神经网络等。每种模型都有其优缺点,需要根据数据特性和预测需求来选择。 5. **训练与验证**: 数据会被划分为训练集和测试集,训练集用于训练模型,而测试集用于评估模型的泛化能力。交叉验证也是评估模型性能的常用方法,它可以提供更稳定的结果。 6. **模型评估**: 常用的评估指标包括准确率、精确率、召回率、F1分数以及ROC曲线。对于不平衡数据集(如心脏病数据集,正常人少于患者),AUC-ROC和查准率-查全率曲线可能更为重要。 7. **模型调优**: 通过调整模型参数(如决策树的深度、SVM的C和γ参数等)或使用网格搜索、随机搜索等方法优化模型性能。 8. **预测与解释**: 最终模型可以用来预测新个体的心脏病发作风险,并为医生和患者提供预防建议。同时,模型解释性也很重要,比如通过特征重要性了解哪些因素对预测结果影响最大。 这个数据集为心脏病研究提供了宝贵素材,有助于研究人员和数据科学家开发更精准的预测模型,从而改善医疗诊断和预后。通过对这些数据的深入挖掘,我们可以更好地理解心脏病的发病机制,为预防和治疗提供科学依据。
2024-09-04 14:11:47 4KB 数据集 机器学习 数据分析
1