YOLOv8是一种高效的目标检测模型,它是YOLO(You Only Look Once)系列的最新版本。YOLO系列以其快速和准确的实时目标检测能力而闻名,而YOLOv8则在此基础上进行了优化,提升了检测速度和精度。在本项目中,开发者使用了ONNXRuntime作为推理引擎,结合OpenCV进行图像处理,实现了YOLOv8的目标检测和实例分割功能。 ONNXRuntime是一个跨平台、高性能的推理引擎,它支持多种深度学习框架导出的ONNX(Open Neural Network Exchange)模型。ONNX是一种开放标准,可以方便地在不同的框架之间转换和运行模型。利用ONNXRuntime,开发者能够轻松地将训练好的YOLOv8模型部署到各种环境中,实现高效的推理。 OpenCV是一个强大的计算机视觉库,提供了丰富的图像处理和分析功能。在目标检测和实例分割任务中,OpenCV可以用于预处理输入图像,如缩放、归一化等,以及后处理预测结果,例如框的绘制和NMS(非极大值抑制)操作,以去除重叠的边界框。 YOLOv8模型在目标检测方面有显著提升,采用了更先进的网络结构和优化技术。相比于之前的YOLO版本,YOLOv8可能包含了一些新的设计,比如更高效的卷积层、自注意力机制或其他改进,以提高特征提取的效率和准确性。同时,实例分割是目标检测的延伸,它不仅指出图像中物体的位置,还能区分同一类别的不同实例,这对于复杂的场景理解和应用至关重要。 在这个项目实战中,开发者可能详细介绍了如何将YOLOv8模型转换为ONNX格式,然后在ONNXRuntime中加载并执行推理。他们可能还演示了如何使用OpenCV来处理图像,与YOLOv8模型接口交互,以及如何解析和可视化检测结果。此外,项目可能还包括了性能测试,展示了YOLOv8在不同硬件环境下的运行速度,以及与其他目标检测模型的比较。 这个项目提供了深入实践YOLOv8目标检测和实例分割的完整流程,对理解深度学习模型部署、计算机视觉库的使用,以及目标检测和实例分割算法有极大的帮助。通过学习和研究这个项目,开发者可以掌握相关技能,并将这些技术应用于自己的实际项目中,如智能监控、自动驾驶等领域。
2024-09-20 15:10:19 7.46MB ONNXRuntime OpenCV 目标检测 实例分割
1
在C# WinForm开发中,`TreeView`控件是一个常用且功能强大的组件,它用于展示层次结构的数据,比如文件系统、数据库结构或者自定义的对象结构。`TreeView`控件通过节点(TreeNode)来表示数据,每个节点可以有子节点,形成一个树状结构。在本例中,我们将探讨如何使用`TreeView`以及与之相关的递归算法。 1. **TreeView控件基本操作** - **添加节点**:可以通过`TreeView.Nodes.Add()`方法添加顶级节点,然后通过`TreeNode.Nodes.Add()`添加子节点。 - **显示图标**:每个节点可以设置图标,通过`TreeNode.ImageIndex`和`TreeNode.SelectedImageIndex`属性。 - **展开/折叠节点**:使用`TreeNode.Expand()`和`TreeNode.Collapse()`方法。 - **遍历节点**:可以通过`TreeView.Nodes`集合进行遍历,获取所有节点信息。 2. **递归算法与TreeView** - **递归加载数据**:在数据量大或结构复杂时,我们通常使用递归算法加载`TreeView`。例如,从数据库或XML文件中获取层次数据,然后逐级添加到`TreeView`中。递归函数会调用自身,每次处理一个节点并添加其子节点。 - **遍历树结构**:使用递归遍历`TreeView`中的所有节点,可以获取整个树的结构信息。从根节点开始,对每个节点执行操作,然后递归处理其子节点。 3. **递归函数示例** - 以下是一个简单的递归函数,用于将树形数据结构加载到`TreeView`中: ```csharp public void LoadTree(TreeNode node, List data) { foreach (var item in data) { TreeNode newNode = new TreeNode(item.Name); node.Nodes.Add(newNode); if (item.HasChildren) // 检查数据对象是否有子项 LoadTree(newNode, item.Children); // 递归调用,处理子项 } } ``` 这里的`MyDataObject`是表示层次数据的类,包含`Name`和`Children`属性。 4. **事件处理** - **节点点击事件**:`TreeView`控件有`AfterSelect`事件,当用户选择一个节点后触发,可以获取选中节点的信息。 - **节点展开/折叠事件**:`TreeView`提供了`BeforeExpand`和`BeforeCollapse`事件,可以在节点展开或折叠前执行相关操作。 5. **性能优化** - **异步加载**:为提高用户体验,可使用异步方法加载大量数据,防止UI线程阻塞。 - **虚拟化**:对于非常大的树,可以启用虚拟化以节省内存,只在节点可见时加载它们。 6. **自定义节点行为** - **拖放支持**:`TreeView`支持拖放操作,可以通过实现`DragDrop`和`DragEnter`等事件进行自定义。 - **右键菜单**:可以为`TreeView`添加右键菜单,通过`ContextMenuStrip`控件为不同节点提供不同的操作选项。 7. **扩展功能** - **搜索节点**:通过遍历所有节点,根据关键词查找特定节点。 - **保存和加载状态**:可以保存`TreeView`的状态(如展开/折叠状态、选中节点),以便在下次启动时恢复。 总结,`C# WinForm`中的`TreeView`控件是构建层级结构界面的强大工具。结合递归算法,我们可以高效地加载和操作复杂的树形数据。理解并熟练运用这些知识,能帮助开发者创建功能丰富的用户界面。
2024-09-20 14:11:23 20.36MB TreeView 递归算法
1
主要讲解基于创龙TMS320C665x算法Demo例程演示:运用数据采集处理显示系统Telecom Tower:远端射频单元(RRU)单核TMS320C6655/双核TMS320C6657,主频1.0/1.25GHz, ### 基于创龙TMS320C665x算法Demo例程演示的知识点解析 #### 一、TMS320C665x简介与应用背景 **TMS320C665x**是德州仪器(TI)推出的一款高性能数字信号处理器(DSP)系列,主要包括单核TMS320C6655和双核TMS320C6657两个型号,主频分别可达1.0 GHz和1.25 GHz。这些处理器适用于通信基础设施中的复杂信号处理任务,特别是远端射频单元(RRU)场景中的数据采集、处理和显示系统。RRU作为现代移动通信网络的关键组成部分之一,其性能直接影响到整个通信系统的质量和效率。 #### 二、工程文件结构及导入方法 本章节涉及的所有工程均位于光盘"Demo\Algorithm\Application"文件夹内,旨在演示算法的功能。需要注意的是,这些算法与特定的平台和操作系统无关,如果想要使用SYS/BIOS或其他高级框架,用户需要自行完成相应的移植工作。此外,尽管提供的例程适用于广州创龙的TMS320C6655/TMS320C6657系列开发板,但不同的开发板可能存在硬件资源上的差异,因此最终的测试结果仅供参考。 #### 三、有限长单位冲激响应滤波器(FIR) **FIR滤波器**是一种线性相位滤波器,通过有限个单位冲激响应(impulse response)来实现。这类滤波器不依赖于反馈,因此在实现过程中具有较高的稳定性和精确度。本例程的主要目的是测试FIR滤波器的性能。具体操作步骤如下: 1. **工程导入与运行**: 按照2.3节中的“CCS工程导入和编译步骤”导入FIR.out文件,然后点击程序运行按钮。 2. **原始信号分析**: 使用CCS菜单中的“Tools->Graph->SingleTime”选项查看原始时域信号+噪声波形。 3. **滤波后信号分析**: 同样使用“Tools->Graph->SingleTime”查看经过FIR滤波后的时域信号波形。 4. **频域信号分析**: 使用“Tools->Graph->FFTMagnitude”选项分析原始信号和滤波后信号在频域的表现。 #### 四、无限脉冲响应数字滤波器(IIR) 与FIR滤波器不同,**IIR滤波器**利用反馈机制来实现滤波效果,因此通常能够以较少的计算资源实现更高的滤波效率。本例程同样通过一系列步骤演示了IIR滤波器的应用: 1. **工程导入与运行**: 加载IIR.out文件并运行程序。 2. **原始信号分析**: 使用“Tools->Graph->SingleTime”结合“Import”功能查看原始时域信号+噪声波形。 3. **滤波后信号分析**: 同样使用“Tools->Graph->SingleTime”结合“Import”查看经过IIR滤波后的时域信号波形。 4. **频域信号分析**: 使用“Tools->Graph->FFTMagnitude”结合“Import”选项分析原始信号和滤波后信号在频域的表现。 #### 五、Matlab辅助设计工具 为了方便设计人员进行滤波器的设计与分析,可以利用Matlab软件中的“Filter Designed & Analysis Tool”。该工具支持多种滤波器类型,包括低通、高通、带通和带阻等。在本例程中,使用该工具设计了两种类型的滤波器: 1. **FIR滤波器设计**: - **滤波器类型**: 低通(Lowpass) - **滤波方式**: 等纹波FIR(Equiripple) - **滤波器阶数**: Specify order(31+1阶) - **采样频率**: 1000Hz - **通带截止频率**: 150Hz - **阻带截止频率**: 350Hz 2. **IIR滤波器设计**: - **滤波器类型**: 低通(Lowpass) - **滤波方式**: 巴特沃斯IIR(Butterworth) - **滤波器阶数**: Specify order(4+1阶) - **采样频率**: 1000Hz - **通带截止频率**: 150Hz 设计完成后,可通过“Target->Generate C Header”生成包含滤波器系数的`.H`头文件,供后续开发使用。 #### 六、注意事项 - **信号频率**: 在本例程中,信号频率设定为100Hz,而噪声频率设定为450Hz。 - **DSP库**: 若采用TI C6000 DSP库进行开发,建议选用实数FIR非优化滤波函数。 以上就是基于创龙TMS320C665x算法Demo例程演示的主要知识点,通过这些示例可以帮助开发者更好地理解和掌握FIR与IIR滤波器的设计与实现方法,进而应用于实际项目中。
2024-09-20 09:57:46 19.39MB 远端射频单元 Demo例程 C665x算法
1
电机foc(Field-Oriented Control,磁场定向控制)转速和dq电流双闭环svpwm(Space Vector Pulse Width Modulation,空间电压矢量脉宽调制)算法在Simulink中的仿真是一项重要的电机控制技术。这项技术涉及到电力电子、电机理论和控制系统设计等多个领域,下面将详细介绍这些知识点。 磁场定向控制(FOC)是一种高效率、高性能的交流电机控制策略。它的核心思想是将交流电机的三相电流转化为直轴(d轴)和交轴(q轴)的两相等效直流电流,从而实现对电机磁场的独立控制,提高动态性能。在电机控制中,FOC可以显著提升电机的扭矩响应和效率,特别是在低速运行时。 svpwm算法是现代电机驱动系统中常用的一种调制技术,它通过优化开关模式,使得逆变器的输出电压波形接近正弦波,同时减小谐波成分,提高电能质量。在电机的磁场定向控制中,svpwm能够更精确地控制电机的磁链和转矩,实现电流的平滑调节。 转速和电流双闭环控制是电机控制的典型结构。速度环负责调节电机的转速,通常采用PI控制器来实现;电流环则控制电机的电流,确保电机的电磁转矩按需求变化。两个闭环相互配合,确保电机在不同工况下都能稳定、高效运行。 在Simulink环境下进行电机控制系统的仿真,可以直观地搭建和测试控制策略,验证其性能。Simulink提供了丰富的模块库,包括电机模型、控制器模型、svpwm调制模块等,用户可以通过拖拽和连接这些模块,构建出完整的电机控制系统模型。 在“motor3”这个文件中,很可能是包含了电机模型、FOC控制器、速度环和电流环的PI控制器以及svpwm模块的Simulink模型。通过仿真,可以观察电机在不同输入条件下的转速和电流响应,评估控制策略的性能,并进行参数调整优化。 电机foc转速dq电流双闭环svpwm算法的Simulink仿真涵盖了电机控制的多个关键环节,包括电机模型、控制策略设计、svpwm调制以及系统仿真验证。掌握这些知识和技术,对于从事电机驱动、电力电子和自动化领域的工程师来说至关重要。
2024-09-16 23:09:14 88KB
1
传统的小波神经网络以梯度下降法训练网络,而梯度下降法易导致网络出现收敛早熟、陷入局部极小等问题,影响网络训练的精度。文章将萤火虫算法用于训练小波神经网络,在全局内搜寻网络的最优参数。为了提高萤火虫算法参数寻优的能力,在训练过程中自适应调节γ值。同时利用高斯变异来提高萤火虫个体的活性,在保证收敛速度的同时避免算法陷入局部极小。将优化后的小波神经网络用于短期负荷预测,实验证明改进后的预测模型非线性拟合能力较强、预测精度较高。
2024-09-15 20:58:26 172KB 小波神经网络
1
CRC校验算法是一种广泛应用于数据通信和存储领域的错误检测技术,它的全称为Cyclic Redundancy Check。该算法基于多项式除法原理,通过计算数据的校验码,确保数据在传输或存储过程中未发生错误。CRC的核心思想是生成一个简短的固定位数的校验码,这个校验码是根据原始数据计算出来的,并附加到数据后面。接收方收到数据后,会重新计算校验码并与接收到的校验码进行比较,如果两者一致,则认为数据传输无误。 CRC的计算涉及几个关键参数,包括: 1. WIDTH:表示CRC值的位宽,如CRC-8表示生成的CRC为8位。 2. POLY:这是十六进制的多项式,通常省略最高位1,如x8 + x2 + x + 1,其二进制为100000111,转换为十六进制为0x07。 3. INIT:CRC的初始值,与WIDTH位宽相同。 4. REFIN:表示在计算前是否对原始数据进行翻转。 5. REFOUT:表示计算完成后是否对CRC值进行翻转。 6. XOROUT:计算结果与该值进行异或操作得到最终的CRC值。 在实际计算CRC时,首先确定这些参数。例如,对于CRC-8/MAXIM参数模型,假设原始数据为0x34,多项式为0x31。如果REFIN为true,那么需要先对原始数据进行翻转,再进行其他步骤。在CRC8的计算过程中,当遇到1时才进行异或,而不是1就简单地移位。 CRC的计算通常包括以下几个步骤: 1. 如果REFIN为true,原始数据先进行位翻转。 2. 原始数据左移至与WIDTH相匹配的位数,高位补零。 3. 将处理后的数据与多项式进行模2除法,取余数。 4. 余数与XOROUT进行异或。 5. 如果REFOUT为true,将结果进行位翻转,得到最终的CRC值。 CRC8是CRC的一种变体,用于8位数据的校验。它的校验原理与CRC基本相同,但可能有不同的多项式、初始化值和其他参数。CRC8在数据传输中有着广泛的应用,因为它计算简单,对传输错误有较高的检测率。 CRC还可以扩展到CRC16和CRC32,分别用于16位和32位数据的校验。这些更复杂的CRC版本可以提供更强的错误检测能力,适用于更大的数据块。在C语言中实现CRC算法,可以通过宏定义或其他编程技巧来实现不同CRC参数模型的通用性和可移植性。 CRC校验算法是一种有效的错误检测机制,它利用多项式除法的原理生成校验码,确保数据在传输和存储过程中的完整性。通过理解CRC的参数模型和计算过程,开发者可以针对特定应用选择合适的CRC类型,并在C语言等编程环境中实现相应的算法。
2024-09-12 11:09:23 1.18MB
1
整理了: 一阶RC低通滤波器数学模型推导及算法实现 一阶RC高通滤波器数学模型推导及算法实现 二阶RC低通滤波器数学模型推导 二阶RC高通滤波器数学模型推导 陷波滤波器数学公式推导及算法实现 标准卡尔曼滤波器数学公式推导及算法实现 文中对基础知识进行了注释,适合对遗忘的知识的拾起,文中算法的实现都使用了C++语言,适合移植到嵌入式平台,代码也进行了比较清晰的注释,适合理解。 文中所有公式都是up主手动敲出来的。 up主能力有限,难免有错误,欢迎网友指出和交流。 陷波滤波器代码部分不完整,完整代码放置百度云盘,自取: 链接:https://pan.baidu.com/s/1r6mTPmbRJyTKgvBMdlNdIw 提取码:rntb 本文主要涵盖了四种滤波器的公式推导及算法实现,分别是:一阶RC低通滤波器、一阶RC高通滤波器、二阶RC低通滤波器、二阶RC高通滤波器,以及陷波滤波器和标准卡尔曼滤波器。这些滤波器广泛应用于信号处理和数据分析领域,尤其是在嵌入式系统中。 1. 一阶RC低通滤波器: - 数学模型推导:通过拉普拉斯变换将时域转换为频域,得到传递函数。 - 算法推导:采用一阶后向差分进行离散化,通过采样频率和截止频率计算系数。 - 代码实现:提供了一段C++代码实现了一阶RC低通滤波器。 - 算法验证:通过验证代码来确保滤波器功能的正确性。 2. 一阶RC高通滤波器: - 数学模型推导:与低通滤波器类似,但传递函数有所不同,允许高频信号通过。 - 算法推导和实现:同样使用离散化方法,计算系数并实现滤波算法。 - 算法验证:验证滤波器效果。 3. 二阶RC低通/高通滤波器: - 数学模型推导:扩展一阶模型,增加一个电容或电阻,得到更复杂的传递函数。 - 算法推导:推导离散化形式,计算新的系数。 - 实现未在文本中详述,可能需要参考作者提供的完整代码。 4. 陷波滤波器: - 传递函数推导:设计一个特定的滤波器,以衰减特定频率范围内的信号。 - 算法推导:计算系数并实现陷波滤波算法。 - 代码实现:不完整,完整代码需从链接下载。 5. 标准卡尔曼滤波器: - 前置知识:介绍递归处理、数据融合、相关数学基础和状态空间方程。 - 算法推导:包括卡尔曼增益的计算、先验和后验估计协方差的求解。 - 算法实现:分别展示了适用于一维、二维或多维的卡尔曼滤波器的C++实现。 卡尔曼滤波是一种高级的滤波技术,它结合了动态系统的状态估计和测量数据,通过递归算法处理数据,实现对系统状态的最优估计。滤波器的选择取决于应用场景,低通滤波器用于抑制噪声,陷波滤波器用于去除特定频率干扰,而卡尔曼滤波器则适用于复杂环境下的动态数据处理。
2024-09-12 11:05:55 4.7MB
1
CSDN海神之光上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-09-12 09:41:47 15KB matlab
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-09-12 09:39:15 2.67MB matlab
1
红外和可见光图像融合算法的研究进展
2024-09-12 09:28:32 1.4MB 图像融合
1