Linux嵌入式内核及驱动开发视频教程整理大合集,包含初级、高级、项目、物联网等专题。 1、嵌入式内核及驱动开发 2、嵌入式项目实战 3、精通STM32开发 4、ZigBee系统开发 5、蓝牙4.0 BLE 6、RFID开发与应用 7、LoRa开发与应用 8、NB-IOT技术实践开发 9、WIFI开发与应用
2024-09-08 20:52:20 2KB linux 驱动开发
1
7000汉字 符号 英文字符集.txt
2024-09-07 19:19:00 21KB
1
我在训练yolov5 的时候,自己拍摄视频,提取帧,标记,划分训练集数据集,其中训练集1600张左右,验证集170张左右。标记使用的是labelimg,包含yoloTXT、Xml两种标注文件。可用于手势识别等。 剪刀、石头、布又称“猜丁壳”,是一个猜拳游戏。古老而简单,这个游戏的主要目的是为了解决争议,因为三者相互制约,因此不论平局几次,总会有胜负的时候。游戏规则中,石头克剪刀,剪刀克布,布克石头。 YOLO是当前目标检测领域性能最优算法的之一,几乎所有的人工智能和计算机视觉领域的开发者都需要用它来开发各行各业的应用。 YOLO的优势在于又快又准,可实现实时的目标检测。
2024-09-06 20:41:19 270.26MB 数据集 yolo 石头剪刀布 labelimg
1
研究生医学图像处理数据集,医学相关的,全身上下分类分割都有
2024-09-06 15:20:34 224B 图像处理 数据集
1
该交通数据集来源于PeMS网站,包含圣贝纳迪诺市(美国加利福尼亚州南部一座城市)8条高速公路1979个探测器,2016年7月1日至2016年8月31日这2个月的数据。这些传感器每5分钟收集一次数据,包含1979个所有的传感器每5分钟经过的车辆数。 数据集 节点 特征数 时长 时间窗口 PeMSD8 107 3 61天 5min 此外本数据集还包含一个3*107的邻接矩阵文件,该数据表示了107个路口之间的相邻情况(即连通性) 以及节点之间的距离。 可用于交通流量预测、交通速度预测、交通拥堵情况预测、交通信号灯绿信比条件、时间序列分析、时空序列分析
2024-09-04 22:13:20 17.45MB 数据集 数据挖掘 交通预测 深度学习
1
该交通数据集来源于PeMS网站,包含旧金山湾区(美国加尼福尼亚州旧金山大湾区)29条高速公路3848个探测器,2018年1月1日至2018年2月28日这2个月的数据。这些传感器每5分钟收集一次数据,包含3848个所有的传感器每5分钟经过的车辆数。 数据集 节点 特征数 时长 时间窗口 PeMSD4 307 3 59天 5min 此外本数据集还包含一个307*307的邻接矩阵文件,该数据表示了307个路口之间的相邻情况(即连通性) 以及节点之间的距离。 可用于交通流量预测、交通速度预测、交通拥堵情况预测、交通信号灯绿信比条件、时间序列分析、时空序列分析
2024-09-04 22:12:25 31.14MB 数据集 数据挖掘 交通预测 深度学习
1
在这个名为“心脏病发作预测数据集”的资源中,我们聚焦于利用数据科学和机器学习方法来预测心脏疾病的发生。数据集包含303个样本,这些样本代表了不同的心脏病患者,目的是通过分析一系列的患者特征来预测他们是否可能会发生心脏病发作。下面将详细介绍这个数据集的关键知识点以及可能涉及的相关技术。 1. **数据集构成**: 数据集由14个属性组成,每个属性代表患者的一个特定特征,例如: - **年龄**:年龄是心脏病风险的重要因素,通常随着年龄的增长,心脏病的风险会增加。 - **性别**:男性通常比女性有更高的心脏病发病率。 - **胸痛类型**:胸痛的性质和严重程度可能预示着不同类型的心脏问题。 - 其他可能的属性包括血压、胆固醇水平、血糖水平、吸烟状况、家族病史等,这些都对心脏健康有着直接影响。 2. **数据分析**: 在开始预测模型构建之前,数据分析师会进行数据探索,包括计算统计量、绘制图表和进行相关性分析,以理解各特征之间的关系和它们与心脏病发作的关联。 3. **特征工程**: 特征工程是机器学习过程中的关键步骤,可能涉及对原始数据进行转换、创建新的特征或处理缺失值。例如,将性别转换为二元变量(男性=1,女性=0),或者对连续数值进行标准化或归一化。 4. **模型选择**: 对于心脏病发作预测,可以使用多种机器学习模型,如逻辑回归、决策树、随机森林、支持向量机、神经网络等。每种模型都有其优缺点,需要根据数据特性和预测需求来选择。 5. **训练与验证**: 数据会被划分为训练集和测试集,训练集用于训练模型,而测试集用于评估模型的泛化能力。交叉验证也是评估模型性能的常用方法,它可以提供更稳定的结果。 6. **模型评估**: 常用的评估指标包括准确率、精确率、召回率、F1分数以及ROC曲线。对于不平衡数据集(如心脏病数据集,正常人少于患者),AUC-ROC和查准率-查全率曲线可能更为重要。 7. **模型调优**: 通过调整模型参数(如决策树的深度、SVM的C和γ参数等)或使用网格搜索、随机搜索等方法优化模型性能。 8. **预测与解释**: 最终模型可以用来预测新个体的心脏病发作风险,并为医生和患者提供预防建议。同时,模型解释性也很重要,比如通过特征重要性了解哪些因素对预测结果影响最大。 这个数据集为心脏病研究提供了宝贵素材,有助于研究人员和数据科学家开发更精准的预测模型,从而改善医疗诊断和预后。通过对这些数据的深入挖掘,我们可以更好地理解心脏病的发病机制,为预防和治疗提供科学依据。
2024-09-04 14:11:47 4KB 数据集 机器学习 数据分析
1
在图像处理领域,图像融合是一项关键技术,它涉及将多个源图像的信息有效地整合在一起,以创建一个包含更多细节和更全面信息的新图像。本资源提供的压缩包"图像融合领域常用的测试集(已配准 可直接使用)"显然是为了支持研究人员和开发者在图像融合算法的开发与评估中使用。下面我们将详细探讨图像融合、配准以及测试集的重要性。 图像融合是通过结合来自不同传感器、不同时间或不同视角的多张图像,提取各自的优势,生成一个综合图像的过程。这种技术广泛应用于遥感、医学成像、计算机视觉等多个领域。例如,在遥感中,可见光图像和红外图像的融合可以提供更丰富的地表信息;在医学成像中,MRI和CT图像的融合有助于医生更准确地定位病变位置。 “已配准”是这个测试集的一个关键特性。图像配准是指将多张图像对齐,使其具有相同的几何结构。在图像融合中,配准至关重要,因为如果不进行配准,图像的对应部分可能不匹配,导致融合结果失真。配准方法包括基于特征的配准、基于区域的配准和基于变换模型的配准等,选择哪种方法取决于图像的特性和应用场景。 测试集在图像融合研究中起着决定性作用。一个良好的测试集应包含各种场景、条件和类型的图像,以便评估融合算法的性能。这些测试集通常会提供不同分辨率、不同光照条件、不同角度和不同传感器获取的图像对。在这个“MIX”压缩包中,我们可以期待找到这样的多样化图像集合,它可以帮助开发者测试其融合算法在不同情况下的表现,从而优化算法并提高其泛化能力。 对于测试集的评价,通常使用一些客观指标,如互信息、均方误差(MSE)、结构相似度指数(SSIM)等。这些指标可以帮助量化融合结果的质量,比如对比度、清晰度、保真度等方面。同时,主观评价也是重要的,通过视觉检查来评估融合图像是否自然、是否有信息损失等。 这个“图像融合领域常用的测试集(已配准 可直接使用)”为研究者和开发者提供了一个宝贵的资源,可以加速图像融合技术的发展和改进。使用这个测试集,他们能够便捷地验证和比较不同融合算法的效果,推动图像处理技术的进步。在实际应用中,优秀的图像融合技术不仅可以提升数据的解释性和分析的准确性,还能为各种领域的决策提供强有力的支持。
2024-09-04 13:46:17 4.16MB 图像处理
1
基于火龙果数据的作物生长趋势项目,通过学习,如何将你构建的AI服务部署到云端上,实现具备识别火龙果生长趋势的云服务能力。下面是我们做的任务案例: 任务1:火龙果训练数据集准备(使用精灵标注助手进行目标检测图像标注、将训练与验证数据集转tfrecord格式数据集) 任务2:目标检测模型搭建与训练(认识目标检测、 YOLOv3目标检测模型、 tensorflow YOLOv3模型训练) 任务3:生长趋势模型推理与模型评估(作物生长趋势模型推理接口、 作物生长趋势模型推理代码实现、作物生长趋势模型精度评估) 任务4:生长趋势AI模型服务封装( Restfull API、Flask环境搭建、Flask实现火龙果生长趋势AI服务) 任务5:模型云端部署与安装(生长趋势AI服务运行环境配置、编写自动化安装脚本实现服务一键安装与拉起)
2024-09-04 10:17:39 328.01MB tensorflow 人工智能 数据集 目标检测
1
汇编语言指令合集,适合汇编入门学习使用,放在电脑里随时查阅
2024-09-03 14:03:56 135KB 汇编
1