spec-img-finesse 在他们的工作Makantasis等。 (2015年)表明,使用CNN,高光谱图像可以成功分类。 CNN可以对像素的光谱和空间特征进行编码。 特征的从低到高层次结构极大地提高了分类性能。 在我们的CNN实施中,我们使用层修剪和层压缩方法扩展和优化了它们的方法。 每个植物在电磁频谱上都有其独特的频谱“特征”,可以使用高光谱传感器捕获该特征。 将图像中的高光谱带作为特征,将每个像素作为样本,利用卷积神经网络(CNN)和支持向量机(SVM)对植物进行分类。 CNN优化有助于防止过拟合,加速推理并减少其在内存,电池和计算能力方面的资源。 Keras 2.1.5与Tensorflow 1.7.0结合使用。 使用了印度松树数据集。 使用支持多项式的SVM可以达到83.9%的测试精度,而使用CNN可以达到99.2%的测试精度。 可以在项目报告“使用高光谱图像进行植
1
高光谱图像分类是遥感领域的研究热点之一,是对地观测的重要手段,在地物的精细识别等领域具有重要的应用。使用卷积神经网络(CNN)可以有效地从原始图像中提取高级特征,具有较高的分类精度。但CNN计算量巨大,对硬件要求较高。为了提高模型计算效率,可以在图形处理器(GPU)上进行CNN模型的训练。现有的并行算法,比如GCN(GPU based Cube-CNN),无法充分利用GPU的并行能力,算法加速效果并不理想。为了进一步提升算法效率,提出基于通用矩阵乘法(GEMM)算法的GGCN(GPU based Cube-CNN improved by GEMM)并行加速算法,通过G-PNPE(GEMM based Parallel Neighbor Pixels Extraction)对输入数据和卷积核进行重新组织排列,实现卷积的并行计算,有效地提高了GPU的利用率并进一步提升了算法的训练效率。通过分析在三个数据集上的实验结果发现,改进算法的分类精度与原算法保持一致,而且模型的训练时间缩短了30%左右,表明算法的有效性和优越性。
2022-06-10 18:50:33 3.42MB 成像系统 高光谱图 图形处理 通用矩阵
1
常用高光谱异常检测数据集abu
2022-06-06 23:04:50 38.64MB 综合资源 文档资料 数据集 高光谱
1
使用混合特征减少方法的 SVM 分类器进行高光谱图像分类 (mRMR-PCA),简单易懂
2022-06-04 22:05:59 43.87MB 支持向量机 分类 文档资料 算法
包含:平滑处理,SNV,MSC,DOSC,DWT,NIRMAF,SAVGOL,NORMALIZ
2022-06-04 22:05:57 9KB matlab 高光谱 预处理 光谱数据
针对高光谱图像数据维数多,光谱信息和空间信息难以提取的问题,提出了一种基于超图和卷积神经网络的分类算法,依据高光谱图像中像素之间的光谱关系和空间关系构建超图;通过超图构建具有谱空联合特征的样本,将其送入卷积神经网络进行特征提取,实现分类。在3种常用的高光谱数据集上进行实验,于Indian Pines数据集上取得了96.63%的总体分类精度。相比于其他算法,所提算法的分类精度高、速度快,而且避免了传统方法在特征提取和融合时出现的不稳定性,验证了其提取的谱空联合信息对高光谱图像具有更强的特征表达能力。
2022-05-29 17:52:43 7.31MB 图像处理 高光谱图 分类 超图
1
使用K-NN、朴素贝叶斯及最小欧氏距离进行高光谱图像分类,准确度和混淆矩阵评估模型,运行project.m即可
2022-05-28 19:07:05 4.99MB 分类 人工智能 机器学习 高光谱图像
1
使用SVM、随机森林及K-NN进行高光谱图像分类,内置Indian_pines、PaviaU、Salinas数据集及其标签
2022-05-28 19:07:04 65.53MB 支持向量机 随机森林 分类 文档资料
1
hsi matlab代码使用线性回归的快速高光谱图像超分辨率 C语言实现 此版本的C语言实现是在Linux上开发的。 内部使用Intel Math Kernel Library(MKL)和Matlab R2014a extern库。 请确保您的计算机上正确安装了这两个依赖项。 使用Makefile编译计算机上的源代码,但是需要根据您的安装修改MKL和Matlab路径(我们的MKL位于/ usr / opt,Matlab位于/ usr / local。)。 我们的方法的实现包含在hss_lr.c中,该文件明确要求低空间分辨率高光谱图像(LR-HSI),高空间分辨率多光谱图像(HR-MSI)和降级算子(D)。 输出为高空间分辨率高光谱图像(HR-HSI)。 在我们的演示(LR_C.c)中,我们分别在CAVE,Havard和ICVL数据集上测试了我们的方法。 Matlab实现 LR_latest * .M包含了我们对不同贴片尺寸的方法,即,2 2,4 4,8×8,16 16,32×32的执行。 为使代码正常运行,请将* .m移到字典依赖项中。
2022-05-23 20:17:08 17KB 系统开源
1