本文来自于腾讯云,全文阐述了卷积神经网络的基本结构和原理,希望对您的学习有帮助。先明确一点就是,DeepLearning是全部深度学习算法的总称,CNN是深度学习算法在图像处理领域的一个应用。第一点,在学习Deeplearning和CNN之前,总以为它们是很了不得的知识,总以为它们能解决很多问题,学习了之后,才知道它们不过与其他机器学习算法如svm等相似,仍然可以把它当做一个分类器,仍然可以像使用一个黑盒子那样使用它。第二点,DeepLearning强大的地方就是可以利用网络中间某一层的输出当做是数据的另一种表达,从而可以将其认为是经过网络学习到的特征。基于该特征,可以进行进一步的相似度比较等
2024-05-20 16:11:54 280KB
1
adi.zip
2024-05-20 15:22:13 16.04MB 神经网络
1
利用jjupyter notebook来进行基于神经网络的手写数字识别,资源内有完整的代码及相关解释。 利用jupyter notebook来进行基于神经网络的手写数字识别,资源内有完整的代码及相关解释。 利用jjupyter notebook来进行基于神经网络的手写数字识别,资源内有完整的代码及相关解释。 利用jjupyter notebook来进行基于神经网络的手写数字识别,资源内有完整的代码及相关解释。 利用jjupyter notebook来进行基于神经网络的手写数字识别,资源内有完整的代码及相关解释。 利用jupyter notebook来进行基于神经网络的手写数字识别,资源内有完整的代码及相关解释。 利用jupyter notebook来进行基于神经网络的手写数字识别,资源内有完整的代码及相关解释。 利用jupyter notebook来进行基于神经网络的手写数字识别,资源内有完整的代码及相关解释。 利用jupyter notebook来进行基于神经网络的手写数字识别,资源内有完整的代码及相关解释。 利用jupyter notebook来进行基于神经网络的手写数字识别。
1
基于BP神经网络回归预测,多变量输入单输出模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-05-17 18:48:38 67KB 神经网络
1
毕设课设_基于MATLAB的多方法车牌识别系统(bp+模板+GUI) ----- 毕业设计,课程设计,项目源码均经过助教老师测试,运行无误,欢迎下载交流 ----- 下载后请首先打开README.md文件(如有),某些链接可能需要魔法打开。 ----- 毕业设计,课程设计,项目源码均经过助教老师测试,运行无误,欢迎下载交流 ----- 下载后请首先打开README.md文件(如有),某些链接可能需要魔法打开。
2024-05-17 17:43:40 1.65MB matlab 毕业设计 gui 神经网络
1
电力电子行业充电机使用神经网络PID和模糊PID和PID三种双闭环控制,模型可直接运行,Ts=1e-6,适合本硕毕业设计使用
1
基于Elman神经网络模型的短期电力负荷预测模型_包满
2024-05-14 22:42:41 1.52MB
1
导语:本系列文章一共有三篇,分别是 《科普篇 | 推荐系统之矩阵分解模型》 《原理篇 | 推荐系统之矩阵分解模型》 《实践篇 | 推荐系统之矩阵分解模型》 第一篇用一个具体的例子介绍了MF是如何做推荐的。第二篇讲的是MF的数学原理,包括MF模型的目标函数和求解公式的推导等。第三篇回归现实,讲述MF算法在图文推荐中的应用实践。三篇文章由浅入深,各有侧重,希望可以帮助到大家。下文是第一篇——《科普篇 | 推荐系统之矩阵分解模型》,第二篇和第三篇将于后续发布,敬请期待。 矩阵分解(Matrix Factorization, MF)是推荐系统领域里的一种经典且应用广泛的算法。在基于用户行为的推荐算法
2024-05-13 23:18:17 416KB 推荐算法 推荐系统
1
模糊神经网络
2024-05-13 21:06:28 187KB 模糊神经网络
1
classification_BPNeuralNetwork 本文介绍了通过Python实现BP神经网络分类算法,对不同半径的圆进行多分类(3分类),特征即为圆的半径。 输入层12节点,一个6节点的隐藏层,输出层3个节点。 1.目标 通过BP算法实现对不同半径的圆的分类。 2.开发环境 IDE:PyCharm 2018.3.3(Community Edition) Python及相关库的版本号如下图所示: 3.准备数据 目的: 生成3类圆在第一象限内的坐标(圆心都是原点) 第1类:半径范围为110,分类标识为‘0’ 第2类:半径范围为1020,分类标识为‘1’ 第3类:半径范围为20~30,分类标识为‘2’ 代码如下:data_generate.py import numpy as np import math import random import csv # 只生成第一象限内的坐标即
2024-05-13 21:00:26 494KB 附件源码 文章源码
1