低压无感BLDC方波控制源码集:通用性高,高效调速,环控制,参数宏定义方便调试,低压无感BLDC方波控制全源码解析:高通用性,参数化启动,环控制及宏定义调试,最高电转速达12w,低压无感BLDC方波控制,全部源码,方便调试移植 1.通用性极高,图片中的电机,一套参数即可启动。 2. ADC方案 3.电转速最高12w 4.电感法和普通三段式 5.按键启动和调速 6.开环,速度环,限流环 7.参数调整全部宏定义,方便调试 代码全部源码 ,关键词: 低压无感BLDC方波控制; 全部源码; 通用性极高; ADC方案; 最高12w电转速; 电感法; 普通三段式; 按键启动调速; 开环/速度环/限流环; 参数宏定义方便调试 结果为:低压无感BLDC方波控制;全部源码;通用性;ADC方案;最高电转速;电感法;普通三段式;按键启动调速;开环、环、限流环控制;参数宏定义。 (注意:以上关键词用分号分隔为:低压无感BLDC方波控制;全部源码;通用性极高;ADC方案;12w电转速;电感法与普通三段式;按键启动调速;开环、速度环、限流环控制;参数调整宏定义),通用性极强BLDC电机方波控制源码:
2025-07-03 11:23:38 19.37MB
1
内容概要:本文介绍了一种基于改进A*算法的AGV路径规划方法及其MATLAB仿真。传统的A*算法允许八个方向的移动,而改进后的版本仅限于四个正交方向,从而降低了规划时间和复杂度。此外,引入了时间窗口机制来避免AGV之间的冲突,确保路径规划的安全性和效率。文中详细展示了如何修改邻居生成代码、设置时间窗口以及进行冲突检测,并通过仿真展示了改进算法的效果。最终,在20x20的地图上运行五个AGV的测试表明,改进后的算法实现了零碰撞。 适合人群:对机器人导航、自动化物流系统感兴趣的科研人员和技术开发者。 使用场景及目标:适用于需要高效、安全地管理个AGV协同工作的场景,如智能仓库、自动化生产线等。目标是减少路径规划的时间,提高AGV的工作效率,避免碰撞事故。 其他说明:文中提到的代码已在GitHub上开源,未来计划进一步优化路径规划算法,如采用粒子群优化等高级技术。
2025-07-03 09:31:23 343KB
1
基于灰狼算法(GWO)优化混合核极限学习机HKELM回归预测, GWO-HKELM数据回归预测,变量输入模型。 优化参数为HKELM的正则化系数、核参数、核权重系数。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2025-07-02 15:17:38 37KB
1
内容概要:本文介绍了一种新型的变量回归预测算法——NGO-DHKELM,该算法结合了北方苍鹰优化算法和深度混合核极限学习机。文章详细解释了算法的工作原理,包括混合核函数的构建、自动编码器的应用以及北方苍鹰优化算法的具体实现。此外,文中提供了完整的Matlab代码及其运行步骤,强调了代码的易用性和灵活性。通过实例展示了该算法在不同数据集上的表现,并给出了调优建议。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员、工程师及学生。 使用场景及目标:适用于需要进行变量回归预测的任务,如金融数据分析、电力负荷预测等。目标是提高预测精度并减少模型复杂度。 其他说明:尽管该算法在特定数据集上表现出色,但在应用时仍需根据实际情况调整参数设置。代码已充分注释,便于理解和修改。
2025-07-02 15:10:25 727KB
1
**独家算法:NGO-DHKELM变量回归预测模型——基于北方苍鹰优化深度混合核极限学习机**,独家算法NGO-DHKELM基于北方苍鹰算法优化深度混合核极限学习机的变量回归预测 Matlab语言 程序已调试好,可直接运行 1变量单输出,也替为时间序列预测。 将项式核函数与高斯核函数加权结合,构造出新的混合核函数,并引入自动编码器对极限学习机进行改进,建立DHKELM模型。 非常新颖原始DHKELM算法知网仅有一两人用过,可完全满足您的需求~ 2北方苍鹰优化算法是2022年新提出的算法,可进行定制改进或替其他算法(蜣螂、鲸鱼优化算法等等),适合需要创新的朋友~ 3直接替Excel数据即可用,注释清晰,适合新手小白 4附赠测试数据,输入格式如图2所示运行main文件一键出图 5仅包含Matlab代码 6模型只是提供一个衡量数据集精度的方法,因此无法保证替数据就一定得到您满意的结果~ ,核心关键词: 独家算法; NGO-DHKELM; 北方苍鹰算法; 深度混合核极限学习机; 变量回归预测; Matlab语言; 程序调试; 时间序列预测; 混合核函数; 自动编码器; DHKELM模
2025-07-02 15:08:48 536KB xbox
1
内容概要:本文详细介绍了将时间维度融入A星算法,用于解决AGV(自动导引车)在同一空间内路径规划和动态避障的问题。文中首先定义了一个新的三维节点类,增加了时间属性,使得每个AGV不仅有空间位置还有对应的时间戳。接着,作者提出了改进的邻居搜索方法,确保AGV移动时考虑到时间和空间的连续性。为了防止AGV之间的碰撞,还设计了一套冲突检测机制,利用字典记录各个时空点的占用情况。此外,加入了启发式函数的时间惩罚项,优化了路径选择策略。最后,通过Matplotlib实现了三维时空轨迹的可视化,展示了AGV在不同时刻的位置关系。 适合人群:对机器人导航、自动化物流系统感兴趣的开发者和技术研究人员。 使用场景及目标:适用于需要高效管理和调度台AGV的小型仓库或生产车间,旨在提高AGV的工作效率,减少因路径冲突导致的任务延迟。 其他说明:文中提供的代码片段可以帮助读者快速理解和应用这一创新性的路径规划方法。同时,作者分享了一些实用的经验技巧,如调整时间权重以适应不同速度的AGV,以及如何避免长时间规划陷入死循环等问题。
2025-07-01 11:34:45 455KB
1
内容概要:本文档详细阐述了6G网络协作通感一体化技术,旨在实现通信与感知的深度融合。文中首先分析了通信感知一体化的驱动力与应用场景,随后介绍了通感融合的工作模式和技术挑战。接着,文档深入探讨了网络协作通感的关键技术,包括系统模型、高精度同步、节点协作机制、高精度感知算法和组网干扰管理。最后,展示了低频和高频网络协作通感的原型验证结果,并对未来发展趋势进行了展望。通过这些技术,6G网络将能够提供全域、全天候、低成本的泛在感知与连接能力,助力低空经济、智慧交通、智慧工厂等行业快速发展。 适合人群:从事通信、感知技术研发的专业人士,尤其是关注6G技术发展的研究人员和工程师。 使用场景及目标:① 提供全域、全天候、低成本的泛在感知与连接能力;② 支撑低空经济、智慧交通、智慧工厂等行业的数字化转型;③ 推动通信感知一体化技术的实际应用和发展。 其他说明:本文档由中国移动通信集团有限公司及相关企业联合发布,旨在推动6G技术的标准化、产业化及应用培育工作。
2025-07-01 10:24:40 2.35MB
1
内容概要:本文介绍了一个基于Matlab的综合能源系统优化调度程序,旨在实现系统运行成本最小化并考虑碳交易机制。该程序涵盖了光伏、风电、热电联产、燃气锅炉、电锅炉、电储能和碳捕集设备等种设备。通过Yalmip和Cplex求解器,程序实现了对不同设备的协同调度,确保在满足功率平衡和其他约束条件下,达到最低运行成本。具体步骤包括初始化参数、定义优化变量、构建目标函数、设定约束条件和求解优化问题。 适合人群:从事能源系统研究和技术开发的专业人士,尤其是关注双碳目标和低碳运行优化的研究人员和工程师。 使用场景及目标:适用于需要优化综合能源系统运行成本和减少碳排放的实际应用场景。目标是通过合理的设备调度,在满足电力需求的同时,降低总体运营成本并实现低碳运行。 其他说明:文中提供了详细的代码片段和解释,帮助读者理解和应用该优化模型。此外,还给出了调试建议和一些实用技巧,如避免约束冲突、合理设置参数范围等。
2025-07-01 08:14:40 775KB
1
环芳烃truxene与triindole类衍生物:合成,结构与光学性能,袁茂森,王齐,八极星型有机共轭分子,其向电荷转移特征往往赋予化合物一些特殊的性质。为了探索合成新的光电功能分子,本文分别以具有C3对称�
2025-06-30 21:10:33 436KB 首发论文
1
### SAE-J1939中的PGN和SPN,以及包传输 #### SAE J1939概述 SAE J1939是一种广泛应用于商用汽车行业的开放式网络和通信标准。这一标准旨在定义如何让电子控制单元(ECU)通过控制器局域网(CAN)总线进行有效通信。它几乎涵盖了所有类型的商用车辆,包括但不限于公交车、大型卡车等,并且在农业、军事及海洋运输领域也有应用。 SAE J1939的工作速率通常为250kbps(部分新协议支持500kbps),使用29位的CAN标识符来确保数据的准确传输。 #### SAE J1939法规文件结构 SAE J1939提供了一系列规范文档,其命名结构有助于用户理解不同部分的功能和用途。 #### 协议数据单元(PDU) PDU由七个主要部分构成: - **优先级**:定义了数据传输的紧急程度。 - **扩展数据页**:用于标识数据页的类型。 - **数据页**:包含实际的数据信息。 - **PDU格式**:指示数据的具体格式。 - **PDU特定域**:可以作为目标地址、组扩展或特定于特定应用。 - **源地址**:发送方的标识。 - **数据场**:包含实际传输的数据。 每个PDU都会被封装在一个或个CAN数据帧中,通过物理媒介传输至其他网络设备。每个CAN数据帧只能承载一种PDU。 #### J1939报文类型 SAE J1939定义了五种基本的报文类型: 1. **命令**:此类消息允许从特定源地址向特定目的地或全局目的地发送命令,以触发特定动作。 2. **请求**:用于从全局范围或特定目标地址请求信息。 3. **广播/响应**:既可以用作主动广播也可以作为命令或请求的响应。 4. **确认**:分为两种形式——基于CAN协议的确认和应用层确认。 5. **组功能**:用于一组特殊功能,如网络管理功能等。 #### PGN与SPN - **PGN(Parameter Group Number)**:参数组号。它是对一组相关的SPN进行分组并定义其在消息中的布局和顺序的标识。PGN不仅用于识别消息的优先级和数据格式,还帮助结构化地传输和解析参数。 - **SPN(Suspect Parameter Number)**:参数号。每个SPN代表了一个特定的参数,如发动机转速、车速等,它提供了一种标准化的方式来描述和识别不同参数。 ##### PGN的组成 PGN由CAN ID中的扩展数据页(EDP)、数据页(DP)、PF(PDU格式)、GE(PDU特定域)加上六个0位组成,总共24位。当PF小于240时,GE默认为0;当PF大于等于240时,GE取正常值。例如,对于报文ID 0x18FECA17: - 第一个字节是18(二进制为0001 1000),优先级为6,EDP=0,DP=0; - 第二个字节是PF=FE(十进制254>240); - 第三个字节是GE=CA(由于PF>240,GE取正常值); - 第四个字节及之后的部分用于标识具体的PGN。 #### 包传输 在J1939协议中,某些PGN可能包含大量数据,这可能导致单个CAN数据帧不足以容纳全部信息。此时就需要采用包传输的方式,即把数据分成个CAN数据帧进行传输。例如,对于包PGN,一个请求可能会触发一系列CAN数据帧的响应,每帧包含一部分数据。这种机制确保了即使是非常大的数据集也能被有效地传输和处理。 总结而言,SAE J1939是一种强大的通信标准,它通过PGN和SPN的概念实现了复杂数据的有效管理和传输。通过理解和掌握这些核心概念,可以帮助开发者和工程师更好地利用这一标准,提高系统的互操作性和可靠性。
2025-06-30 16:28:28 6.52MB J1939
1