在本资源中,"MATLAB计算机视觉与深度学习实战代码 - 基于块匹配的全景图像拼接.rar" 提供了使用MATLAB进行计算机视觉和深度学习实践的一个实例,特别是涉及到了全景图像的拼接技术。全景图像拼接是通过将多张局部图像融合成一个广阔的单一图像来实现的,常用于摄影、无人机航拍等领域,能够提供更全面的视角。 我们来了解计算机视觉。计算机视觉是一门多领域交叉学科,它旨在让计算机模仿人类视觉系统,理解并解释现实世界的图像和视频。在这个过程中,关键步骤包括图像采集、预处理、特征检测、物体识别、场景理解等。MATLAB作为强大的数值计算和可视化工具,提供了丰富的计算机视觉库,如Computer Vision Toolbox,使得开发者可以方便地进行图像处理和分析。 然后,深入到深度学习。深度学习是机器学习的一个分支,主要依赖于人工神经网络的多层结构,以模拟人脑的学习方式。通过大量的数据训练,深度学习模型能自动学习特征,并用于分类、识别、预测等多种任务。在计算机视觉领域,深度学习被广泛应用于图像分类、目标检测、语义分割和图像生成等。 本实例中提到的“基于块匹配的全景图像拼接”是一种经典的图像拼接方法。块匹配涉及到将源图像的不同部分(块)与参考图像进行比较,找到最佳匹配的对应区域,以此来确定图像间的相似性和变换参数。通常,块匹配会计算SIFT(尺度不变特征转换)、SURF(加速稳健特征)或ORB(Oriented FAST and Rotated BRIEF)等局部特征,以找到对应点。找到这些对应点后,通过估计几何变换(如仿射变换或透视变换),就可以将多张图像融合成全景图像。 在实际操作中,MATLAB的Computer Vision Toolbox提供了块匹配算法的实现,以及图像变换和融合的函数。例如,`vision.BlockMatcher` 可用于块匹配,`estimateGeometricTransform` 可以估算变换参数,而`imwarp` 或 `imfuse` 可以进行图像的变形和融合。 通过这个实战代码,学习者可以深入了解计算机视觉中的图像拼接技术,同时也可以学习如何在MATLAB环境中结合深度学习技术解决实际问题。这将有助于提升对图像处理、特征匹配和几何变换的理解,为开发更复杂的计算机视觉应用打下坚实基础。
2025-04-17 03:31:48 1.26MB matlab 深度学习 人工智能
1
在图像处理领域,水印技术是一种重要的数字版权保护方法,用于在图像中嵌入不可见或微弱可见的信息,以证明所有权或者验证图像的原始性。在这个特定的项目中,我们探讨的是如何在3D DICOM(Digital Imaging and Communications in Medicine)格式的图像中应用水印,使用了离散余弦变换(DCT)和离散小波变换(DWT)的技术。MATLAB作为强大的数值计算和图像处理平台,被广泛用于此类应用的开发。 离散余弦变换(DCT)是一种将信号从时域转换到频域的方法,对于图像数据来说,它能够突出图像中的高频成分,如边缘和细节。在图像水印中,DCT常用来对图像进行预处理,然后在变换后的系数中嵌入水印信息,因为这些系数对人眼来说相对不敏感,但又足够显著以保证水印的稳定性和鲁棒性。 离散小波变换(DWT)则提供了一种多分辨率分析的方式,可以同时处理图像的时间和频率信息。在3D图像水印中,DWT的优势在于它可以对多维度数据进行分析,对于3D DICOM图像,DWT可以在三个轴上分别进行分解,从而更好地隐藏水印信息,同时减少对原始图像质量的影响。 DICOM格式是医学成像领域标准的数据交换格式,它包含了图像数据以及相关的元数据,如患者信息、扫描参数等。因此,在3D DICOM图像中嵌入水印,不仅需要考虑图像处理的技术,还需要遵循DICOM标准,确保水印不会破坏图像的临床意义和解析性。 MATLAB提供的工具箱如Image Processing Toolbox和Signal Processing Toolbox,为实现这种复杂的水印算法提供了便利。通过编写MATLAB脚本,我们可以实现DCT和DWT的计算,水印信息的嵌入和提取,以及对水印鲁棒性的测试,例如对抗常见的图像处理操作(如缩放、剪切、滤波等)。 在“3d watermarking.zip”这个压缩包中,可能包含以下内容: 1. MATLAB源代码文件(.m),实现了3D DICOM图像的读取、DCT/DWT处理、水印嵌入和检测的算法。 2. 示例3D DICOM图像文件,用于测试代码的正确性和效果。 3. 测试脚本,用于运行水印算法并进行性能评估。 4. 可能还有辅助文件,如README文档,解释代码的使用方法和注意事项。 这个项目展示了如何利用MATLAB结合DCT和DWT技术,在3D DICOM图像中实现高效的水印嵌入,这对于医学图像的版权保护和数据安全具有重要意义。通过深入理解和实践这些代码,新手可以快速掌握3D图像水印的基本原理和技术,并进一步研究更复杂的应用场景。
2025-04-17 00:18:09 3.02MB matlab
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-04-16 21:39:36 6.99MB matlab
1
数据融合在信息技术领域中是一个重要的概念,特别是在大数据分析和机器学习中。Matlab作为一个强大的数学计算和编程环境,被广泛用于处理和分析各种类型的数据。本文将深入探讨使用Matlab进行数据融合的相关知识点。 我们需要理解数据融合的含义。数据融合,也称为多源数据融合或信息融合,是将来自不同来源、类型或时间的数据整合成一个一致、准确且全面的信息过程。在实际应用中,如遥感、图像处理、物联网和智能系统,数据融合能提高决策的准确性和效率。 Matlab提供了一套完整的工具箱和函数库,支持对各种数据类型进行操作和分析,这使得它成为实现数据融合的理想选择。在"maatlaab-master"这个压缩包中,很可能包含了用于数据融合的Matlab源代码和示例,可能涵盖以下几个方面: 1. **数据预处理**:数据融合的第一步通常是数据清洗和预处理,包括去除噪声、填充缺失值、数据归一化等。Matlab提供了如`isnan`、`imfill`、`normalize`等函数来处理这些问题。 2. **特征提取**:数据融合中的关键步骤是提取有意义的特征。Matlab的信号处理和图像处理工具箱提供了丰富的函数,如傅立叶变换、小波分析、特征选择等,用于从原始数据中提取关键信息。 3. **多模态融合**:如果数据来自多个传感器或模态,Matlab可以帮助进行数据集成。例如,通过使用矩阵运算和统计方法,可以结合视觉、听觉和触觉等多种感知信息。 4. **时空数据融合**:在处理时序数据时,数据融合可能涉及不同时间点或空间位置的信息整合。Matlab的时间序列分析和地理信息系统工具可以帮助进行这样的融合。 5. **机器学习算法**:数据融合通常与机器学习算法相结合,以构建更准确的模型。Matlab的机器学习工具箱提供了各种分类、回归和聚类算法,如SVM、神经网络和决策树,这些可以应用于融合后的数据。 6. **并行计算和优化**:面对大规模数据,Matlab的并行计算工具箱可以加速数据处理和融合过程。同时,优化工具箱可以用于寻找最佳的融合策略或参数设置。 7. **可视化**:通过Matlab的图形界面和绘图函数,可以将融合结果以直观的方式呈现出来,帮助研究人员和工程师理解融合效果。 "maatlaab-master"可能是一个开源项目,意味着它的代码和方法可供学习和改进。通过研究这些代码,我们可以深入了解如何利用Matlab进行数据融合,并可能将其应用到自己的项目中。 数据融合在Matlab中的实现是一个综合的过程,涵盖了数据处理、特征工程、模型构建等多个环节。"maatlaab-master"提供的代码资源为理解和实践这一过程提供了宝贵的素材。通过深入学习和实践,我们可以提升在数据融合领域的技能,更好地应对复杂的数据分析挑战。
2025-04-16 20:46:14 2.99MB 系统开源
1
matlab的egde源代码5g ldpc代码 要测试LDPC编码和解码功能,请在matlab下运行以下功能 test_all_ldpc_cases LDPC解码功能decLDPC_layered.m来自,作者是Christoph Studer。 我对其进行了一些小的修改以加快其执行速度。 LDPC解码功能ldpc_decode.m来自。 包含的两个excel文件来自3gpp。 除decLDPC_layered.m和ldpc_decode.m之外的matlab代码均遵循MIT许可证。
2025-04-16 20:32:52 1.33MB 系统开源
1
在图像处理领域,特征分类识别是一项关键任务,特别是在生物多样性研究、农业自动化和计算机视觉应用中。本项目专注于使用MATLAB实现树叶图像的特征分类识别,涵盖了图像分析、处理、分割、特征提取以及分类识别等多个核心步骤。接下来,我们将详细探讨这些知识点。 **图像分析**是整个流程的起点,它涉及到对图像的初步理解,包括颜色、纹理、形状等基本信息。MATLAB提供了丰富的图像分析工具,如imhist用于图像直方图分析,imstats用于计算图像的统计特性,这些可以帮助我们了解图像的基本属性。 接下来是**图像处理**,这一步通常包括预处理操作,如去噪(例如使用滤波器,如高斯滤波或中值滤波)、增强对比度、归一化等。在MATLAB中,我们可以使用imfilter进行滤波操作,imadjust进行对比度调整,以及imnormalize进行归一化处理,以提高后续处理的效果。 然后是**图像分割**,这是将图像划分为具有特定属性的区域的关键步骤。MATLAB中的imseg*函数(如imsegkmeans、imseg watershed等)可以用于颜色或强度阈值分割,或者利用更复杂的算法如区域生长、水平集等。在这个项目中,可能采用适合树叶边缘检测的算法,如Canny边缘检测或Otsu二值化,以突出树叶的轮廓。 **特征提取**是识别过程的核心,这一步旨在从图像中抽取有意义的信息,如形状特征(面积、周长、形状因子等)、纹理特征(GLCM、LBP、Gabor滤波器等)或颜色特征(颜色直方图、颜色共生矩阵等)。MATLAB的vision.FeatureExtractor类提供了多种特征提取方法,可以根据具体需求选择合适的特征。 **分类识别**阶段,特征被输入到一个分类器中,如支持向量机(SVM)、神经网络或决策树等,以对树叶进行分类。MATLAB的 Classification Learner App 提供了多种机器学习模型,通过训练数据进行模型构建,并对新图像进行预测。 在压缩包中,`README.md`文件可能是项目说明文档,包含详细步骤、数据来源、运行指令等内容;而`树叶图像特征分类识别程序.zip`是实际的MATLAB代码和相关资源。解压后,用户可以查看代码实现,理解每个步骤的具体细节,并可能需要准备相应的训练图像数据集来运行程序。 这个MATLAB程序展示了从图像处理到特征分类识别的完整流程,是学习和实践图像分析技术的宝贵资源。通过理解和应用这些知识点,不仅可以提高图像处理技能,还能为其他领域的问题解决提供借鉴。
2025-04-16 18:57:44 1.67MB 图像特征识别
1
基于fpga的2psk调制解调器实现,代码包括quartus和vivado两个工程版本,使用到的所有滤波器全部采用matlab设计参数,verilog代码实现,没有调用滤波器ip,可以进行任意调整或者采用其他厂家fpga实现,quartus版本代码采用modelsim仿真,vivado使用其自带仿真软件仿真。 下图是一些仿真以及滤波器频谱图. 在现代通信领域,数字调制解调技术扮演着至关重要的角色,其中2PSK(二进制相位偏移键控)调制解调器是一种广泛使用的数字调制方式。随着可编程逻辑设备如FPGA(现场可编程门阵列)的发展,利用FPGA实现2PSK调制解调器成为了一种灵活高效的解决方案。本文将详细介绍基于FPGA的2PSK调制解调器的实现,包含quartus和vivado两个工程版本,并且重点阐述了使用matlab设计参数以及verilog代码实现的过程。 从系统设计的角度来看,2PSK调制解调器的实现可以被分为两个主要部分:调制部分和解调部分。在调制过程中,数字基带信号被转换成相应的模拟信号,而解调过程则是调制过程的逆过程,即将模拟信号恢复成原始的数字信号。在FPGA实现中,这两个过程都通过硬件描述语言如verilog来编程实现。 为了确保通信系统的性能,设计者通常需要对信号进行滤波处理。在这个项目中,所有滤波器的设计都采用了matlab工具。通过matlab,设计者可以首先进行理论设计和仿真,优化滤波器的参数,以满足特定的性能指标。在参数确定后,这些设计参数会被转化成FPGA可识别的verilog代码,最终在FPGA硬件上实现滤波功能。 本项目中的FPGA工程版本有两个,分别对应于quartus和vivado这两个不同的设计环境。Quartus是由Altera公司(现为Intel旗下)开发的FPGA设计软件,而Vivado则是Xilinx公司提供的新一代设计套件。两种环境都有各自的优势和特点,设计师可以根据项目的具体需求和个人习惯选择使用。值得注意的是,quartus版本的代码使用了modelsim进行仿真测试,而vivado版本则使用了其自带的仿真软件进行仿真。 整个FPGA工程的实现过程,从最初的verilog代码编写,到最终在硬件上的测试验证,是一个复杂且细致的过程。设计者需要对verilog语言有深入的理解,并且掌握FPGA的编程和调试技巧。在编码过程中,除了基本的调制解调算法实现外,还需要考虑信号的同步、误差控制、资源优化等多个方面。 本项目中,设计者还提供了关于2PSK调制解调器实现的详细技术分析和深入的技术细节描述。这包括了对系统架构的讨论、信号处理流程的解释以及在实现过程中可能遇到的技术挑战和解决方案。这些分析内容对于理解整个系统的实现有着至关重要的作用。 在文档中提到的仿真和滤波器频谱图,是验证设计正确性和性能评估的重要工具。通过这些图表,设计者可以直观地看到信号在调制解调过程中的变化,以及滤波器在不同频段上的表现,从而对系统的性能进行评估和调整。 基于FPGA的2PSK调制解调器的实现是一个涉及信号处理、硬件编程和系统仿真等多个方面的复杂工程。通过本项目的实现,不仅可以掌握2PSK调制解调的核心技术,而且能够深入理解FPGA在数字通信系统中应用的潜力和优势。
2025-04-16 18:01:54 1.55MB matlab fpga开发
1
资源文件夹内部包含fruit-360水果数据集,训练导出来的模型文件,使用main函数可以直接运行示例代码。同时还针对该系统设计了GUI APP可视化界面,对识别的类别精度和时间进行显示,可以基于代码进行自己的深层次开发。fruit-360数据集下总共有131种水果,本次训练文件只选用4种分别为train目录下的Apple Braeburn、Banana、Cherry 1、Grape Pink,需要更多的分类可以重新提取完整数据集下的图片进行训练。 在当今信息技术飞速发展的时代,深度学习作为人工智能领域的一个重要分支,已经在多个领域展现出其强大的功能和应用潜力。在这其中,图像识别技术,尤其是基于卷积神经网络(CNN)的图像分类系统,已经成为深度学习研究和应用中的热点。AlexNet是一个标志性的CNN模型,它在2012年的ImageNet大规模视觉识别挑战赛(ILSVRC)中取得了突破性的成绩,开启了深度学习在图像识别领域的新篇章。 本资源文件夹提供的基于AlexNet的水果分类系统,专为MATLAB环境设计,是一个完整的机器学习工程项目。它不仅包含了用于训练和分类的模型文件,而且还提供了便捷的GUI应用程序,使得用户能够直观地看到识别结果和性能指标。该系统使用的是fruit-360数据集,这个数据集共包含了131种不同的水果类别。在本项目中,为了简化训练过程和提高分类效率,作者选择了其中的四种水果——Apple Braeburn、Banana、Cherry 1、Grape Pink作为分类对象。这四种水果代表了从不同颜色、形状到大小均有所差异的常见水果类型,能够很好地展示模型的分类能力。 用户可以利用main函数直接运行示例代码,观察模型在特定数据集上的分类效果。系统设计了GUI APP可视化界面,这样用户不仅可以得到分类结果,还能获得识别的精度和所需时间等详细信息。这样的设计不仅增加了用户体验的友好性,也为研究者或开发者提供了方便,便于他们根据实际需求进行进一步的分析和开发。 针对需要对更多种类的水果进行分类的问题,该项目也提供了提取fruit-360完整数据集图片进行训练的方案。用户可以通过扩展数据集的方式,不断增加模型的识别种类和准确性,以适应更加复杂的实际应用场景。由于是基于MATLAB平台,开发者还可以利用MATLAB强大的数学计算能力、丰富的工具箱和图像处理功能,来进行模型的改进和优化。 该资源文件夹提供的基于AlexNet的水果分类系统,不仅为研究者和开发者提供了一个有价值的参考模型,也为深度学习在实际应用中的快速部署和自定义开发提供了可能。通过这个系统的使用和改进,可以加深对深度学习理论和技术的理解,推动人工智能技术在各行各业中的广泛应用。
2025-04-16 17:49:46 326.65MB 深度学习 人工智能 matlab
1
内容概要:本文详细介绍了利用MATLAB进行滚动轴承故障诊断的方法,主要采用了变分模态分解(VMD)算法与包络谱分析相结合的技术手段。首先,通过对西储大学提供的标准轴承数据进行预处理,设定适当的采样频率和VMD参数(如K值和alpha值),将复杂的振动信号分解为多个本征模态分量(IMF)。接着,选择合适的IMF分量进行希尔伯特变换并计算其包络谱,从而识别出潜在的故障特征频率。最后,通过比较理论计算的故障特征频率与实际测量所得的频谱峰值来确定具体的故障类型。 适合人群:从事机械设备维护、故障检测以及相关研究领域的工程师和技术人员。 使用场景及目标:适用于工业生产环境中对旋转机械特别是滚动轴承的健康监测和故障预警。能够帮助技术人员快速定位故障源,减少非计划停机时间,提高设备运行效率。 其他说明:文中还提供了详细的代码实例和参数调整建议,便于读者理解和应用。同时强调了一些常见的注意事项,如避免过度分解、正确设置采样频率等,确保诊断结果的有效性和可靠性。
2025-04-16 17:39:50 390KB
1
CSDN Matlab武动乾坤上传的资料均是完整代码运行出的仿真结果图,可见完整代码亲测可用,适合小白; 1、完整的代码内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-04-16 15:51:38 12KB matlab
1