ELM极限学习机多输入单输出预测(Matlab完整程序) ELM极限学习机多输入单输出预测(Matlab完整程序) ELM极限学习机多输入单输出预测(Matlab完整程序)
2024-05-02 18:21:49 14KB matlab
1
灰狼算法(GWO)优化极限学习机ELM回归预测,GWO-ELM回归预测,多变量输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-03-12 14:51:49 42KB
1
为有效挖掘瓦斯涌出量监测数据隐含特征,预防瓦斯动力灾害,基于希尔伯特-黄变换(HHT)方法、布谷鸟搜索算法(CS)和极限学习机(ELM)基本理论,构建了瓦斯涌出量的HHT-CSELM动态预测模型。通过EMD将样本序列分解成多个不同频率的本征模态函数(IMF)分量;利用Hilbert变换获取各分量的瞬时频率,并据此将IMF分量划分成较高频和低频,采用不同的预测模型进行预测,经叠加各预测值得到最终预测结果。以汾西矿业集团某矿瓦斯涌出量监测数据为例进行仿真实验,结果表明:HHT方法能有效降低数据复杂度,其最小相对误差为0.144%,最大相对误差为0.388%,平均相对误差为0.281%,具有较高的预测精度和泛化能力;更好地适用于非平稳时间序列预测。
2024-01-15 23:40:20 291KB 行业研究
1
为提高工作面瓦斯涌出量预测的效率和准确率,提出了一种将遗传算法(GA)与极限学习机(ELM)相结合的瓦斯涌出量预测的新方法。为了避免ELM受输入权值矩阵和隐含层偏差随机性的影响,算法采用GA对ELM的输入权值矩阵和隐含层偏差进行优化,建立GA-ELM瓦斯涌出量预测模型。利用某矿瓦斯涌出量相关数据对该模型进行了实例分析,将ELM、SVM和BP算法预测结果与该模型进行了对比分析。结果表明:GA-ELM模型具有较高的预测精度,可以相对准确、高效地对工作面的瓦斯涌出量进行预测。
1
针对矿井突水事故的预测问题,提出一种基于极限学习机(Extreme Learning Machine,ELM)的矿井突水水源识别新方法。该方法是一种单隐含层前馈神经网络学习算法,在训练过程中无需调整初始连接权值和阈值,只需要设置隐含层神经元个数即可获得最优解。以梧桐庄煤矿水质为例,通过MATLAB仿真证实,该方法不仅克服了常规BP神经网络受初始权值和阈值影响的缺陷,而且识别精度更高;在突水预测方面有很好的应用前景。
2024-01-11 16:30:54 181KB 行业研究
1
粒子群优化极限学习机的参数。最佳粒子位置即为最优输入权值和隐层阈值。自己跑过的,放数据匹配一下就可以用
2024-01-05 14:52:37 6KB 粒子群算法优化
1
ELM_MatlabClass-master,极限学习机分类预测MATLAB代码完整
2023-07-13 20:26:18 51KB 分类,预测
1
ELM极限学习实现花的分类(MATLAB源码+数据集+预测结果),训练集40个样本,测试集10个样本,测试集最高准确率可达100%,可以根据自己的需求更换数据集对自己的研究内容进行一个替换,测试此文方法的预测效果。
2023-04-02 18:14:07 34KB ELM 极限学习 MATLAB 预测
1
擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真。
2023-03-06 20:23:44 460KB matlab
1
可以运行的代码!蜣螂优化算法(DBO)优化极限学习机(ELM),能够很好的进行回归预测,并且该算法是今年提出的,非常好用,值得推荐和写论文
2023-03-06 08:58:28 24KB 蜣螂优化算法 DBO 极限学习机 ELM
1